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We present the proof of renormalization of the Hořava theory in the nonprojectable version. We obtain a
form of the quantum action that exhibits a manifest Becchi-Rouet-Stora-Tyutin–symmetry structure.
Previous analysis has shown that the divergences produced by irregular loops cancel completely between
them. The remaining divergences are local. The renormalization is achieved by using the approach
developed by Barvinsky et al. with the background-field formalism.
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I. INTRODUCTION

In this paper we present the proof of renormalization of
the Hořava theory, considering its nonprojectable version
[1,2]. This theory, whose gauge group is given by the
foliation-preserving diffeomorphisms (FDiff), is a proposal
for a quantum theory of gravitation. The theory is
unitary [3], we are presenting here its renormalization,
and it might yield the classical dynamics of general
relativity at the large-distance limit.
We base the proof on three main aspects. First, the theory

is quantized under the Batalin-Fradkin-Vilkovisky (BFV)
formalism, incorporating the second-class constraints
[4–6]. This formalism allows us to introduce a local
gauge-fixing condition that leads to regular propagators
for most of the fields [7,8], together with the measure of the
second-class constraints [9,10]. After the integration on
some ghost fields and the redefinition of the Becchi-Rouet-
Stora-Tyutin (BRST) symmetry transformations, we get a
form of the quantum action with manifest BRST-symmetry
structure. Second, it is known from previous studies [11,12]
that the only divergences produced by the integration along
the frequency (called irregular loops) cancel exactly
between them. In the integration on the spatial momentum,
the behavior of the irregular propagators is equivalent to the
regular ones. Hence, all divergences are local [13,14]. The
highest superficial degree of divergence is equal to the

order of the bare Lagrangian. Third, we use the approach
developed by Barvinsky et al. [15] to undertake the
renormalization of gauge theories, which is based on the
background-field formalism [16,17].
The proof of renormalization of the projectable case,

which is a version of the Hořava theory defined by the
restriction that the lapse function depends exclusively on
time, is known [7,15]. The need for an anisotropic gauge-
fixing condition that leads to regular propagators was
identified in this case. The resulting Lagrangian is local
when it is expressed in terms of canonical variables.
However, a fundamental difference in the quantization of
the projectable and nonprojectable cases is the absence of
second-class constraints in the former. In the nonproject-
able case, a similar quantization can be carried on, with the
analogous gauge-fixing condition. The second-class con-
straints lead to a modification of the measure of the path
integral. The measure has the effect of yielding irregular
propagators on some auxiliary fields, despite the fact that
the rest of the quantum fields acquire regular propagators.
Since the regular structure is important for the control of
divergences [14], a careful study of the consequences of the
irregular propagators is required. For this reason it becomes
essential for the previously mentioned analysis to show not
only that the divergences produced by the irregular loops
are canceled but also the fact that these are the only
divergences in the direction of the frequency.
As most of the modern approaches of renormalization of

gauge theories, the proof relies on the BRST symmetry and
the background-field formalism. The Slavnov-Taylor and
Ward identities are useful to determine the divergences of
the effective action. On the other hand, the BFV quantiza-
tion is based on the Hamiltonian formalism. Therefore, it is
important to arrive at a form of the quantum action being
separated in the usual way: a sector invariant under the
FDiff gauge symmetry, and another sector fixing the gauge

*Contact author: jorge.bellorin@uantof.cl
†Contact author: claudio.borquez@uss.cl
‡Contact author: byron.droguett@uantof.cl

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 110, 084020 (2024)

2470-0010=2024=110(8)=084020(12) 084020-1 Published by the American Physical Society

https://orcid.org/0000-0001-9449-7211
https://orcid.org/0009-0009-4756-0383
https://orcid.org/0000-0003-3548-0406
https://ror.org/04eyc6d95
https://ror.org/04jrwm652
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.084020&domain=pdf&date_stamp=2024-10-07
https://doi.org/10.1103/PhysRevD.110.084020
https://doi.org/10.1103/PhysRevD.110.084020
https://doi.org/10.1103/PhysRevD.110.084020
https://doi.org/10.1103/PhysRevD.110.084020
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


symmetry by means of the BRST operator. We find such a
BRST-symmetry structure. This allows us to apply the
background-field formalism of Ref. [15].
The analysis of renormalization requires one to know the

propagators. With the vertices, the feature that we require is
the highest order in spatial derivatives, independent of their
explicit form. For this reason, in this study we need only to
write explicitly the higher-order terms in the Lagrangian
that contribute to the propagators.

II. BFV QUANTIZATION OF THE HOŘAVA
THEORY

A. The classical theory

The initial assumption in the definition of The Hořava
theory is the existence of a foliation of spatial slices along a
given direction of time with absolute meaning. In the
classical theory, the fields representing the gravitational
interaction are the Arnowitt-Deser-Misner (ADM) field
variables Nðt; x⃗Þ, Niðt; x⃗Þ, and gijðt; x⃗Þ. We deal only with
the nonprojectable version, on which the lapse function N
can depend on time and space. The corresponding gauge
symmetry is given by the FDiff. In terms of a given
coordinate system ðt; x⃗Þ, the FDiff acts infinitesimally as
δt ¼ fðtÞ and δxi ¼ −ζiðt; x⃗Þ.1 The FDiff transformations
on the ADM variables has the following form:

δN ¼ ζk∂kN þ fṄ þ ḟN; ð2:1Þ

δNi ¼ ζk∂kNi − Nk
∂kζ

i þ ζ̇i þ fṄi þ ḟNi; ð2:2Þ

δgij ¼ ζk∂kgij þ 2gkði∂jÞζk þ fġij: ð2:3Þ

These general FDiff transformations are a feature of the
Hořava theory at the classical level. In the quantization of
the theory we impose asymptotically flat boundary con-
ditions by fixing specific values of the fields at spatial
infinity. The fixed values are equivalent to have set a
Cartesian system at spatial infinity (see Ref. [18] for a
discussion on asymptotically flat conditions in the context
of Hořava theory, where a definition of the spacetime
metric does not exist). These conditions on the spatial
metric and the lapse function are

gij¼δijþOðr−1Þ; N¼1þOðr−1Þ; r≡
ffiffiffiffiffiffiffiffi
xixi

p
: ð2:4Þ

(The field Ni remains as a Lagrange multiplier.) Since
Njr¼∞ ¼ 1 and fðtÞ is independent of the spatial point, the
boundary condition requires the restriction fðtÞ ¼ 0. For
example, the terms ḟðtÞN þ fðtÞṄ in (2.1) break this
condition on N if f is left active. Notice that the way to
impose the restriction f ¼ 0 is equivalent to a partial

gauge-fixing condition since we are recurring to specific
values of the fields associated with a coordinate system, at
least at infinity. Therefore, the FDiff gauge symmetry of the
quantum theory is characterized by the time-dependent
spatial vector ζiðt; x⃗Þ. We denote these transformations by
δζ; they are given by

δζN ¼ ζk∂kN; ð2:5Þ

δζNi ¼ ζk∂kNi − Nk
∂kζ

i þ ζ̇i; ð2:6Þ

δζgij ¼ ζk∂kgij þ 2gkði∂jÞζk: ð2:7Þ

It is important to compare with the spatial diffeomor-
phisms, since many variables behave as spatial tensors that
evolve in time, as the case of N, gij, and the arbitrary
parameter ζi itself. For the case of a time-dependent spatial
tensor Tij��� and a tensor density tij���, their FDiff trans-
formations are functionally identical to spatial diffeomor-
phism:

δζTij��� ¼ ζk∂kTij��� − Tkj���
∂kζ

i − Tik���
∂kζ

j − � � � ;
δζtij��� ¼ ζk∂ktij��� þ tij���∂kζk − tkj���∂kζi − tik���∂kζj − � � � :

ð2:8Þ

Throughout this study, the term FDiff gauge symmetry of
the Hořava theory refers to the transformations (2.5)–(2.8)
for the case of time-dependent spatial tensors/densities.
Among the ADM variables, only the shift vector Ni has a
FDiff transformation that is functionally different from a
spatial diffeomorphism.
The classical action of the nonprojectable theory is [1,2]

S ¼
Z

dtd3x
ffiffiffi
g

p
NðKijKij − λK2 − VÞ; ð2:9Þ

where the kinetic terms are defined in terms of the extrinsic
curvature tensor,

Kij ¼
1

2N
ðġij − 2∇ðiNjÞÞ; K ¼ gijKij: ð2:10Þ

V ¼ V½gij; ai� is called the potential, where

ai ¼
∂iN
N

: ð2:11Þ

V contains all the terms with spatial derivatives that are
compatible with the FDiff gauge symmetry, including the
higher-order ones characteristic of the Hořava theory. The
order of each term is labeled by the parameter z, such that a
given term is of 2z order in spatial derivatives. The power-
counting criterion for renormalizability requires terms of
order z ¼ 3 for the theory in three spatial dimensions.
Although the complete potential is huge, for the study of

1The signs of the FDiff transformations are the opposite of the
standard diffeomorphisms.
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renormalization we may concentrate on a certain class of
terms explicitly. The reason is that the only ingredients we
require to know explicitly are the propagators. Regarding
the vertices, we are only required to know the possible
orders that they contribute in spatial derivatives, which has
been fixed at the beginning (besides some restrictions on
the couplings of certain fields, which we have studied
previously [11,12]). Moreover, in the propagators we are
interested in only the dominant contributions at the ultra-
violet; that is, the z ¼ 3 terms. Therefore, in this study we
consider explicitly only the z ¼ 3 terms of the potential that
contribute to the propagators [19]. In this way, the terms of
the potential that we handle explicitly are2

Vðz¼3 propagÞ ¼ −α3∇2R∇iai − α4∇2ai∇2ai

− β3∇iRjk∇iRjk − β4∇iR∇iR: ð2:12Þ

∇i and Rij are the covariant derivative and the Ricci tensor
of the spatial metric gij.
The primary classical Hamiltonian of the nonprojectable

Hořava theory is given by [20–22]

H0 ¼
Z

d3xH0; H0 ≡ ffiffiffi
g

p
N

�
πijπij
g

þ σ̄
π2

g
þ V

�
:

ð2:13Þ

The classical canonical conjugate pairs are ðgij; πijÞ and N
with its conjugatemomentum.Wedenote the traceπ ≡ gijπij.
The canonical momentum of N is zero due to the constraints
of the theory; we discard it from the phase space.
The BFV quantization requires one to identify the con-

straints that are involutive under Dirac brackets [4–6]. In the
case of the Hořava theory this is the momentum constraint

Hi ¼ −2gij∇kπ
kj ¼ 0; ð2:14Þ

which is the generator of the spatial diffeomorphisms on the
canonical pair ðgij; πijÞ. The Dirac bracket between two Hi

coincides with the Poisson bracket, yielding the algebra of
spatial diffeomorphisms. By denoting two spatial points
by xi and yi and leaving the time dependence implicit, this
algebra is

fHiðxÞ;HjðyÞgD¼
∂δðx−yÞ

∂xi
HjðxÞ−

∂δðx−yÞ
∂yj

HiðyÞ;

ð2:15Þ

where f; gD indicates Dirac brackets. The coefficients of this
algebra are used in the definition of the BRST charge and the
gauge-fixed Hamiltonian.

The second-class constraints are given by the vanishing
of the momentum conjugate to N, which we have already
considered as solved, and the constraint

θ1 ≡ N
δH0

δN
¼ Nffiffiffi

g
p ðπijπij þ σ̄π2Þ þ ffiffiffi

g
p

NV þ B ¼ 0;

ð2:16Þ

where B stands for total derivatives.3 In the quantum theory,
the terms in B that contribute to the propagators come from
the terms (2.12), such that

Bðz¼3 propagÞ ¼ −α3
ffiffiffi
g

p ∇2ðN∇2RÞ þ 2α4
ffiffiffi
g

p ∇i∇2ðN∇2aiÞ:
ð2:17Þ

Notice that the difference between θ1 and the primary
Hamiltonian densityH0 (2.13) is the set of total derivatives
B. Therefore, the primary Hamiltonian (2.13) is equivalent
to the integral of this second-class constraint,

H0 ¼
Z

d3xθ1: ð2:18Þ

B. BFV quantization with second-class constraints and
a gauge-fixing condition

The BFV quantization adds the canonical pair ðNi; πiÞ
and the BFV ghost pairs ðCi; P̄iÞ, ðC̄i;PiÞ. The definition
of the BFV path integral, under a given gauge-fixing
condition, is

Z ¼
Z

DVeiS; ð2:19Þ

DV ¼ DgijDπijDNDNkDπkDCiDP̄iDC̄iDPi

× δðθ1Þ det
δθ1
δN

; ð2:20Þ

S¼
Z

dtd3xðπijġijþπiṄiþPiĊiþPi ˙̄Ci−HΨÞ: ð2:21Þ

The factor δðθ1Þ det δθ1=δN in (2.20) is the measure
associated with the second-class constraints (see
Ref. [3]). It can be incorporated in the quantum action
with the help of new auxiliary variables,

δðθ1Þdet
δθ1
δN

¼
Z

DADη̄Dη

×exp

�
i
Z

dtd3x

�
Aθ1− η̄

δθ1
δN

η

��
; ð2:22Þ

2The coupling constants of the theory are λ; α3; α4; β3; β4. We
use the shorthand σ̄ ¼ λ=ð1 − 3λÞ.

3Variations of ai with respect to N produce a total derivative:
δai ¼ ∂iðδN=NÞ.
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where A is a bosonic scalar field and η; η̄ is a pair of scalar
ghosts. The gauge-fixed Hamiltonian density is defined by

HΨ ¼ H0 þ fΨ;ΩgD; ð2:23Þ

where Ω is the generator of the BRST symmetry, given by

Ω ¼
Z

d3xðHkCk þ πkPk − Ck
∂kClP̄lÞ; ð2:24Þ

and Ψ is a gauge fermion.

For the gauge fixing we may use the original BFV
structure of the gauge fermion [8,23]. The gauge-fixing
condition and its associated gauge fermion are, respec-
tively, of the form

Ṅi − χi ¼ 0; ð2:25Þ
Ψ ¼ P̄iNi þ C̄iχ

i; ð2:26Þ

where χi is a part that must be chosen. With these settings,
the BFV path integral of the Hořava theory takes the form

Z ¼
Z

DgijDπijDNDNkDπkDCiDP̄iDC̄iDPiDADη̄Dη

× exp

�
i
Z

dtd3x

�
πijġij þ πiṄi þ P̄iĊi þ Pi ˙̄Ci −H0 −HiNi − P̄iPi

þ P̄iðCj
∂jNi − Nj

∂jCiÞ − πkχ
k − C̄ifχi;HjgCj þAθ1 − η̄

δθ1
δN

η

��
: ð2:27Þ

To arrive at this form of the quantum action, we have used
the fact that the factor χi we choose does not depend on Ni

nor any of the ghost fields.
To write χi explicitly, we introduce perturbative variables

around a flat background: gij ¼ δij, N ¼ 1, and the rest of
variables take zero value. The perturbations are denoted by

gij¼δijþhij; πij¼pij; N¼1þn; Ni¼ni; ð2:28Þ
and for the rest of the perturbative field variableswe keep the
original notation. We choose χi to be the local expression4

χi ¼ ρDijπj − 2ρΔ2
∂jhij þ 2ρλκ̄Δ2

∂ih − 2κρΔ∂i∂j∂khjk;

ð2:29Þ

where

Dij ¼ δijΔ2 þ κΔ∂i∂j; ð2:30Þ
Δ ¼ ∂k∂k, ρ, κ are independent constants, and κ̄ ¼ κ þ 1.
The explicit form of χi completes the procedure of the gauge
fixing.

III. THE BRST-SYMMETRY STRUCTURE

In the BFV formalism, the BRST symmetry transforma-
tions on the canonical fields are generated by Ω, according
to the rule

δΩΦ ¼ fΦ;ΩgDϵ; ð3:1Þ
where ϵ is the fermionic parameter of the transformation.
The BRST transformations of the quantum canonical fields,

when the theory is restricted to the constrained phase space
(the constrained surface), result in

δΩgij ¼ δCϵgij; δΩπ
ij ¼ δCϵπ

ij;

δΩN ¼ δCϵN;

δΩNi ¼ Piϵ; δΩπi ¼ 0;

δΩCi ¼ ∂jCiCjϵ; δΩP̄i ¼ δCϵP̄i;

δΩPi ¼ 0; δΩC̄i ¼ πiϵ; ð3:2Þ

where δCϵ is the FDiff with the time-dependent vector
parameter Ciϵ. πij and P̄i are time-dependent spatial tensor
densities.
The auxiliary fields A; η; η̄ are not canonical. We define

their BRST transformation in such a way that the measure
is left invariant. The transformations are FDiff along Ciϵ:

δΩA ¼ δCϵA;

δΩη ¼ δCϵη;

δΩη̄ ¼ δCϵη̄; ð3:3Þ

where the three fields A; η; η̄ transform as time-dependent
spatial scalar fields. We remark that A multiplies the
constraint θ1, which is invariant under the BRST trans-
formation (3.1) since it is a second-class constraint. As a
consequence the combination Aθ1 is invariant over the
constrained surface.5 The factor δθ1=δN multiplying η; η̄ is
a time-dependent scalar density.

4The coefficients in (2.29) are chosen to simplify the resulting
propagators (see Refs. [7,8]).

5Alternatively, one may declareA to be BRST invariant. In this
case the combination Aθ1 is left invariant in the whole phase
space, not only on the constrained surface.
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On the path integral (2.27), we perform the integration
on the ghost fields Pi; P̄i. The resulting action can be
grouped into two sectors,

S ¼ S0½φa� þ SΩ; ð3:4Þ

where

S0½φa� ¼
Z

dtd3x

�
πijġij −H0 − NiHi þAθ1 − η

δθ1
δN

η

�
;

ð3:5Þ

SΩ¼
Z

dtd3x½πiðṄi−χiÞ

− ˙̄CiðĊiþCj
∂jNi−Nj

∂jCiÞ− C̄ifχi;HjgCj�: ð3:6Þ

S0½φa� depends exclusively on the set of fields φa, where

φa ¼ fgij; πij; N; Ni;A; η; η̄g: ð3:7Þ

At this point it is useful to clarify that all the fields of the
quantum theory transform as time-dependent spatial ten-
sors/densities under FDiff transformations, except for Ni.
Moreover, S0 is invariant under arbitrary FDiff gauge
transformations. We remark that, for a FDiff transformation

with a time-dependent vector parameter ζi, the first and
third terms of (3.5) combine themselves to cancel time
derivatives of ζi,

δζ

Z
dtd3xðπijġij − NiHiÞ ¼ 0; ð3:8Þ

as it is well known from the ADM formulation of general
relativity. The rest of the terms in (3.5) contain no time
derivatives and are independent of Ni. Their invariance
under FDiff is automatic since they are written totally in
terms of spatial tensors/densities. In contrast, SΩ is the
gauge-fixing sector of this symmetry.
As a consequence of the previous integration, the BRST

symmetry (3.2) must be revised. Specifically, the trans-
formation of Ni is affected. The second term in (3.6) is key
to unfold the new transformation, since it has the form of a
FDiff (2.6) along Ci. Therefore, we define the new BRST
transformation of Ni to be the FDiff

δΩNi ¼ ðCj
∂jNi − Nj

∂jCi þ ĊiÞϵ: ð3:9Þ

This transformation is nilpotent. The new BRST symmetry
transformations are

δΩgij ¼ δCϵgij; δΩπ
ij ¼ δCϵπ

ij; δΩN ¼ δCϵN; δΩNi ¼ δCϵNi;

δΩA ¼ δCϵA; δΩη ¼ δCϵη; δΩη ¼ δCϵη̄;

δΩCi ¼ ∂jCiCjϵ; δΩC̄i ¼ πiϵ; δΩπi ¼ 0: ð3:10Þ

After the (re)definitions we have done, it turns out that the
BRST transformation of all the φa fields corresponds to a
FDiff along Ciϵ. Therefore, the BRST invariance of S0½φa�
is automatic.
The quantum action (3.4) can be written in the standard

notation of the BRST symmetry. We denote by s the BRST
operator. The action of s on the φa fields is a FDiff
transformation with a vector parameter equal to Ci. C̄i and
πi are the usual auxiliary fields of the BRST symmetry. The
action of the BRST operator is

sφa ¼ δCφ
a;

sCi ¼ −Cj
∂jCi;

sC̄i ¼ πi;

sπi ¼ 0: ð3:11Þ
The sector SΩ (3.6) is equal to the action of the BRST
operator on a gauge fermion, SΩ ¼ R

sΨ̃, where

Ψ̃ ¼ C̄iðṄi − χiÞ; ð3:12Þ

and χi is given in (2.29). Therefore, the quantum action
(3.4) has the BRST-invariant form

S ¼ S0½φa� þ
Z

dtd3xsΨ̃: ð3:13Þ

We highlight that the whole Lagrangian is completely local.

IV. PROPAGATORS AND LOCALITY OF
DIVERGENCES

The propagators can be calculated from the action (3.4),
expanded at second order in perturbations. In Fourier space
ðω; k⃗Þ, after a Wick rotation, the nonzero propagators are
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hC̄iCji ¼ −2PijT 3 − 2k̂ik̂jT 4;

hpijpkli ¼ −β3Mijklk6T 1 − 2νPijPklk6T 2;

hhijhkli ¼ 4MijklT 1 þ 8ðω2 þ 2ρk6ÞQijklT 2
3 þ 8ðσPijPkl þ σ̄Pijk̂kk̂l þ σ̄k̂ik̂jPklÞT 2

þ 4

1 − λ
k̂ik̂jk̂kk̂l½ð2ω2T 4 − 1ÞT 4 þ 2λσ̄T 2�;

hhijpkli ¼ 2ω½MijklT 1 þ 2QijklT 3 þ 2PijPklT 2 þ 2σ̄k̂ik̂jPklðT 2 − T 4Þ þ k̂ik̂jk̂kk̂lT 4�;
hnkhiji ¼ −16iρωk4ðPkðikjÞT 2

3 þ κ̄kkk̂ik̂jT 2
4Þ;

hnipkli ¼ −4iρk4PiðkklÞT 3 þ 4iρκ̄ð2λPkl − ð1 − λÞk̂kk̂lÞkik4T 4;

hninji ¼ 4ρðω2 þ 2ρk6Þk4PijT 2
3 þ 4ρκ̄ðω2 þ 4ρκ̄ð1 − λÞk6Þk4k̂ik̂jT 2

4;

hnhiji ¼ −
4α3
α4

ðσPij þ σ̄k̂ik̂jÞT 2;

hnpiji ¼ −
2α3
α4

ωPijT 2;

hπknji ¼ 2ωðT 3Pkj þ k̂kk̂jT 4Þ;
hπkhiji ¼ −4iðPiðjkkÞT 3 þ kkk̂ik̂jT 4Þ;

hnni ¼ 2α23
α24

σT 2; ð4:1Þ

and

hAAi ¼ hAni ¼ hη̄ηi ¼ −
1

α4k6
; ð4:2Þ

where the projectors are defined by

Pij ¼
1

2
ðδij − k̂ik̂jÞ;

Mijkl ¼ PikPjl þ PilPjk − PijPkl;

Qijkl ¼ k̂ik̂kPjl þ k̂jk̂kPil þ k̂ik̂lPjk þ k̂jk̂lPik; ð4:3Þ

and

T 1 ¼
1

ω2 þ β3k6
; T 2 ¼

1

ω2 þ σνk6
;

T 3 ¼
1

ω2 − 2ρk6
; T 4 ¼

1

ω2 − 4ρκ̄ð1 − λÞk6 ; ð4:4Þ

ν ¼ 3β3 þ 8β4 − 2
α23
α4

; σ ¼ 1 − λ

1 − 3λ
: ð4:5Þ

The condition of regularity on propagators is appropriate
for the study of ultraviolet divergences in Lorentz-violating
theories [14].6 Indeed, the gauge condition (2.29) is
intended to get regular propagators for the quantum

fields [7,8]. Consider a propagator between two fields that
have scaling dimensions r1 and r2. It is regular if it is given
by the sum of terms of the form

Pðω; kiÞ
Dðω; kiÞ ; ð4:6Þ

where D is the product

D ¼
YM
m¼1

ðAmω
2 þ Bmk2d þ � � �Þ; Am; Bm > 0; ð4:7Þ

and Pðω; kiÞ is a polynomial of maximal scaling degree less
than or equal to r1 þ r2 þ 2ðM − 1Þd, with d ¼ 3 in our
case. The ellipsis stands for terms with lower scaling. All
the propagators in the list (4.1) are given in terms of sums of
products of the four factors T 1, T 2, T 3, T 4, and these
propagators satisfy the condition of regularity, whenever
the constants satisfy the following bounds:

β3>0; σν>0; ρ<0; ð1−λÞκ̄>0: ð4:8Þ

On the contrary, the three propagators hAAi, hAni, and
hη̄ηi in (4.2), which are the only ones involving the fields
A; η; η̄, are independent of ω; hence, these propagators are
irregular. The persistence of irregular propagators in the
nonprojectable theory demands a careful study of the
divergences. We remark that this effect is a consequence
of the measure of the second-class constraints.

6Throughout this study we assume that infrared divergences
have been regularized.

BELLORÍN, BÓRQUEZ, and DROGUETT PHYS. REV. D 110, 084020 (2024)

084020-6



In the action (3.4), time derivatives arise uniquely in
terms that are of second order in perturbations. As a
consequence, vertices do not depend on the frequency ω.
Hence, for the integration on ω we only need to consider
propagators. We call an irregular loop to a loop formed
completely with the irregular propagators (4.2). Since these
propagators do not depend on ω, an irregular loop produces
a divergence of the kind ∼

R
dω. Such a divergence

multiplies any diagram containing (at least) one irregular
loop. In previous analysis [11,12], we have shown that all
the diagrams with irregular loops cancel completely
between them. We may give a clue on how this happens
in the effective action. The integrated form of the one-loop
quantum corrections to the effective action has the form of a
Berezinian,

iΓð1Þ ¼ −
1

2
ln

�
detðA − 2BD−1BTÞ

detD

�
; ð4:9Þ

where A, B, D are matrices of derivatives of the action. We
remark that all the irregular propagators in (4.2) are exactly
equal among them. Some restrictions on the possible
couplings of the A; η; η̄ fields are required in this analysis;
they are summarized in Ref. [12]. For example, an
important fact is that there is no way to form an irregular
loop mixing propagators of A with the propagator of η; η̄.
Irregular loops containing the A field are produced exclu-
sively by the numerator of (4.9), whereas irregular loops
containing the η; η̄ ghosts are produced exclusively by the
factor detD in the denominator. They cancel themselves
exactly, and there are no more irregular loops in the
effective action (4.9).
Moreover, only the irregular loops produce divergences

on the integration on ω, due to the fact that the regular
propagators automatically render the integration on ω
finite. Let us suppose first a loop composed completely
of regular propagators. The regular propagators with the
lowest scaling in ω−1 are of order ∼ω−1. These are the
propagators hhijpkli, hnpiji, and hπknji. If the loop
consists only of one propagator of this kind, then the
integral is zero since these propagators are odd in ω. The
next order is a product of two propagators of this kind, or a
single propagator with scaling ∼ω−2. In both cases the
integral in ω is finite.7 By increasing the number of regular
propagators, the convergence in the integration on ω
becomes faster. Now consider the presence of one or more
irregular propagators (4.2) in the loop, but not all since we
know that irregular loops cancel completely. Since the
irregular propagators are independent of ω, the analysis of
the integration on ω is identical to the previous case of a
loop made exclusively of regular propagators.

In the integration on the spatial momentum ki, all the
propagators have a regular structure on this variable,
including the ones of the fields A; η; η̄. According to the
analysis of Lorentz-violating theories [13,14], the locality
of divergences produced by the integration on ki is ensured.
On the basis of the scaling of propagators and the

maximal number of spatial derivatives in the vertices, we
may compute the superficial degree of divergence Ddiv.
For an arbitrary diagram (that may be a subdiagram), the
result is

Ddiv ¼ 6 − 3Ep − 2EN − Eπ − X; ð4:10Þ

where Ep is the number of external pij-legs, EN the number
of external ni-legs, Eπ the number of external πi-legs, and X
the total number of spatial derivatives on external legs. The
diagrams with the highest divergence have Ddiv ¼ 6. This
order is equal to the order of the bare Lagrangian, in
agreement with the power-counting criterion used in the
formulation of the classical theory.

V. THE BACKGROUND-FIELD APPROACH

The aim of introducing background fields is to get a
background-gauge symmetry in the gauge-fixed quantum
action. This symmetry transforms simultaneously the
quantum fields φa and the background fields ϕa in the
form of the original FDiff gauge transformations (2.5)–
(2.8), with the same parameter for both classes of fields.
Specifically, one is required to handle the subset of
fields φa involved in the gauge-fixing condition, in terms
of the linear combination φa − ϕa. In our case, we require
the introduction of background fields only for gij and Ni,
which we denote by ḡij and N̄i, respectively (hence,
ϕa ¼ fḡij; N̄ig). We use a notation for the difference of
fields8:

hij ¼ gij − ḡij; ni ¼ Ni − N̄i: ð5:1Þ

Because of the linearity of the gauge transformations on the
parameter and the fields, hij and ni transform exactly as
time-dependent spatial tensors under background-gauge
transformations,

δζhij ¼ ζk∂khij þ 2hkði∂jÞζk; ð5:2Þ

δζni ¼ ζk∂kni − nk∂kζi: ð5:3Þ

The sector S0½φa� is unaltered in this procedure; hence, it
is automatically invariant under background-gauge trans-
formations. The gauge fermion (3.12) is replaced by a
background-dependent one,

7This reasoning is not altered by considering external fre-
quency circulating in some step of the loop. 8Not to confuse hij; ni with the variables of Sec. II.
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Ψbg ¼ C̄iðDtni − ρΘijkhjk − ρDijðπj=
ffiffiffī
g

p ÞÞ
− T ijhij − Kijπ

ij − T ini

− TN − SA − N̄η − η̄Nþ J̄iCi; ð5:4Þ

where9

Dtni ¼ ṅi − N̄k∇kni þ nk∇kN̄i; ð5:5Þ

Θijk ¼ −2ḡij∇4∇k þ 2λκ̄ḡjk∇4∇i − 2κ∇2∇i∇j∇k; ð5:6Þ

Dij ¼ ḡij∇4 þ κ∇2∇i∇j: ð5:7Þ

All indices are raised and lowered with the background
metric ḡij, and ∇ is its covariant derivative. In Eq. (5.4) we
have inserted external sources for the BRST transforma-
tions of the ðφa − ϕaÞ fields. We denote these sources
collectively by

γa ¼ fT ij;Kij; T i; T ;S; N̄;Ng; ð5:8Þ

whereas J̄i is the source for sCi. Sources for the auxiliary
fields C̄i and πi are not included in Ψbg. All these sources
transform as time-dependent spatial tensors/densities under
FDiff. Dtni transforms as a spatial vector under back-
ground-gauge transformations. The operators Θijk and Dij

are made completely of spatial covariant derivatives; hence,
Ψbg is invariant under background-gauge transformations.
Towrite the action in the background-field approach, one

introduces the operator

Q ¼ sþΩa δ

δϕa ; ð5:9Þ

whereΩa ¼ fΩij;Ωig are external Grassmann fields.Q is a
nilpotent operator. The quantum gauge-fixed action in the
presence of background fields takes the form

Σ0 ¼ S0½φa� þ
Z

dtd3xQΨbg: ð5:10Þ

More explicitly

Σ0 ¼ S0 þ
Z

dtd3x

�
πiðDtni − ρΘijkhjk − ρDijðπj=

ffiffiffī
g

p ÞÞ þ C̄isðDtni − ρΘijkhjkÞ

− γasφa þ J̄isCi þ ΩaC̄i
δ

δϕa ðDtni − ρΘijkhjk − ρDijðπj=
ffiffiffī
g

p ÞÞ þ Ωaγa

�
: ð5:11Þ

VI. RENORMALIZATION

We collect the several results we have found here and in
previous analysis: the BRST-invariant form (3.13) of the
quantum action, together with its background-field exten-
sion (5.10); the completely local form of the gauge-fixed
Lagrangian; the regularity of all the propagators that do not
involve the fields A; η; η̄; the cancellation of the irregular
loops formed by the propagators of these fields; the absence
of divergences along the ω direction, regardless of the
presence of irregular propagators in diagrams; the regular
structure of all the propagators with respect to the depend-
ence on ki, leading to the locality of the divergences; and the
superficial degree of divergence of all diagrams that is not
greater than the order of the bare Lagrangian. On the basis of
these results, the renormalization of the theory is achieved by
following the procedure developed in Ref. [15].
We present a summary of the renormalization. Under an

inductive approach in the order in loops, it is assumed that
at order (L − 1) the divergences have been subtracted, such
that the action at the Lth order in loops is given by

ΣL ¼ ΣL−1 − ℏLΓL;∞ þOðℏLþ1Þ; ð6:1Þ

where Γ is the effective action and∞ stands for its divergent
part. In (6.1) and the subsequent analysis, the effective action
Γ is used as a functional of the quantum fields.
By following standard procedures, identities on the

effective action can be established for this theory. These
are the Slavnov-Taylor identity, the Ward identity, and the
field equation of the auxiliary field πi. In Ref. [15] the
general form of these identities, under the background-field
approach, can be found. The identities on the effective
action imply the following condition of annihilation:

QþΓ̂L;∞ ¼ 0; ð6:2Þ

where

Γ̂≡Γ−
�
πiþΩaC̄i

δ

δϕa

�
ðDtni−ρΘijkhjk−ρDijðπj=

ffiffiffī
g

p ÞÞ;

ð6:3Þ

QþX ¼ δΣ̂0

δγ̂a

δX
δφa þ

δΣ̂0

δφa

δX
δγ̂a

þ δΣ̂0

δJi

δX
δCi þ

δΣ̂0

δCi

δX
δJi

þ Ωa δX
δϕa ;

ð6:4Þ

9In the definition of the operator Θijk we have chosen the
simplest combination of fifth-order covariant derivatives that
reproduces the flat case (2.29). Unitarity requires the operatorDij

to be invertible.
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γ̂i¼T i− C̄iDt; γ̂ij¼T ijþρC̄kΘkij; γ̂a¼ γa otherwise;

ð6:5Þ

and Σ̂0 is the tree-level reduced action

Σ̂0 ¼ S0½φa� þ
Z

dtd3xQΨs; ð6:6Þ

Ψs ≡ Ψ̃ − γ̂aφ
a þ J̄iCi: ð6:7Þ

Operator Qþ is nilpotent. The divergence on the effective
action Γ∞ is equal to the divergence in Γ̂∞. Σ̂0 has no
explicit dependence on the background fields.
By using a procedure of expanding Γ̂L;∞ on the ghost

fields Ci and Ωa, the cohomology of Qþ and other
operators involved in the process guarantee the existence
of the functions SL½φa� and ϒL, such that the solution of
Eq. (6.2) at order L in loops is given by

Γ̂L;∞ ¼ SL½φa� þ QþϒL: ð6:8Þ

When this solution is substituted in Eq. (6.1), the form of
the Lth order gauge fermion is identified,

ΨL ¼ ΨL−1 − ℏLϒL; ð6:9Þ

as well as the form for the Lth order counterterm,

ΣC
L ¼ −SL½φ� − QϒL: ð6:10Þ

The quantum action gets the form

ΣL ¼ S½φ� −
XL
l¼1

ℏlSl½φ� þ QΨL − ℏL δϒL

δγa

δΣ0

δφa

þ ℏL δϒL

δJ̄i

δΣ0

δCi þOðℏlþ1Þ: ð6:11Þ

The first three terms have the desired manifest BRST
structure. In Ref. [15] a field redefinition φa; Ci → φ0a; C0i
is found that eliminates the rest of the terms. It is given by

φa ¼ φ0a þ ℏL δϒL

δγa
ðφ0; C0;…Þ þOðℏLþ1Þ;

Ci ¼ C0i − ℏL δϒL

δJ̄i
ðφ0; C0;…Þ þOðℏLþ1Þ: ð6:12Þ

After this field redefinition, the Lth order quantum action
acquires the BRST structure

ΣL ¼ SL½φa� þ
Z

dtd3xQΨL; ð6:13Þ

where SL½φa� is a FDiff gauge invariant local functional.
The gauge fermion is invariant under background-gauge
transformations and has the form

ΨL ¼ C̄iðDtni − ρΘijkhjk −Dijðπj=
ffiffiffī
g

p ÞÞ
− γaðφa − ϕaÞ þ J̄iCi þOðℏLþ1Þ: ð6:14Þ

In the generating functionalW, the fields that couple to the
external sources, denoted by φ̃a and C̃i,

WL ¼ −ℏ log
Z

DV exp

�
−
1

ℏ

�
ΣL þ

Z
dtdt3xðJaðφ̃a

L − ϕaÞ þ ξ̄iC̃
i
L þ ξiC̄i þ yiπiÞ

��
; ð6:15Þ

are given by the gauge fermion in the form

φ̃a
L ¼ ϕa −

δΨL

δγa
; C̃i

L ¼ δΨL

δJ̄i
: ð6:16Þ

The functional relationship (6.16) is preserved by the field
redefinition (6.12) at the Lth order in loops.

VII. THE (2 + 1)-DIMENSIONAL THEORY

In the (2þ 1)-dimensional Hořava theory, the classical
action maintains the form (2.9), adapted to the two spatial
dimensions. The (2þ 1)-dimensional case requires a
potential of z ¼ 2 order for power-counting renormaliz-
ability. The complete potential with all the inequivalent
z ¼ 1, 2 terms compatible with the FDiff symmetry is [24]

V¼−βR−αaiaiþα1R2þα2ðaiaiÞ2þα3Raiai

þα4aiai∇kakþα5R∇iaiþα6∇iaj∇iajþα7ð∇iaiÞ2:
ð7:1Þ

The coupling constants of the theory are λ, β, α, and
α1;…; α7. We hope that the repetition of the notation on
various constants in the (3þ 1) and (2þ 1) cases does not
cause confusion. The primary classical Hamiltonian has the
same functional form (2.13), with the combinations of
constants:

σ ¼ 1 − λ

1 − 2λ
; σ̄ ¼ λ

1 − 2λ
; ð7:2Þ

and we also use α67 ¼ α6 þ α7. The two second-class
constraints are the vanishing of the momentum conjugate
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to N, and the constraint

θ1 ≡ ffiffiffi
g

p
N

�
πijπij
g

þ σ̄
π2

g
þ V

�
þ ffiffiffi

g
p ð2α∇iðNaiÞ − 4α2∇iðNaiakakÞ − 2α3∇iðNRaiÞ

þ α4ð∇2ðNakakÞ − 2∇iðNai∇jajÞÞ þ α5∇2ðNRÞ þ 2α6∇i∇jðN∇jaiÞ þ 2α7∇2ðN∇iaiÞÞ ¼ 0: ð7:3Þ

Similar to the (3þ 1) case, the primary Hamiltonian (2.13) is equivalent to the integral of this second-class
constraint, H0 ¼

R
d2xθ1.

The BFV quantization [11] is done by repeating the same steps of the (3þ 1) case. In particular, the measure of the
second-class constraints maintain the same functional structure (2.22), as well as the BRST charge Ω and the BFV gauge
fermion Ψ. The factor χi is defined by

χi ¼ Dijπj − 2Δ∂jhij þ 2λκ̄Δ∂ih − 2κ∂ijkhjk; ð7:4Þ

where Dij ¼ δijΔþ κ∂ij. By performing the integration on the BFV ghosts Pi; P̄i and (re)defining the BRST
transformations in the same way, the quantum action can be written in the BRST-invariant form (3.13).
The propagators of the resulting (2þ 1) quantum theory are

hC̄iCji ¼ −Sij;

hpijpkli ¼ ρ2k4PijPklT 1;

hhijhkli ¼ 8ðω2 − 2ρk4ÞQijklT 2
3 þ 4ðσPijPkl þ σ̄k̂ik̂jPkl þ σ̄k̂kk̂lPijÞT 1 þ 4σQk̂ik̂jk̂kk̂lT 1T 2

2;

hhijpkli ¼ 2ω½2QijklT 3 þ PijPklT 1 þ 4ρσ̄ κ̄ ð1 − 2λþ ρ2Þk2kikjPklT 1T 2 þ k̂ik̂jk̂kk̂lT 2�;
hnihjki ¼ 16iωρk3ðPiðjk̂kÞT 2

3 þ κ̄k̂ik̂jk̂kT 2
2Þ;

hnipjki ¼ 2ik3½2Piðjk̂kÞT 3 þ k̂iðρ1k̂jk̂k − 2λκ̄PjkÞT 2�;
hninji ¼ −4ρk2Pijðω2 − 2ρk4ÞT 2

3 − 4ρκ̄ðω2 − 2ρρ1k4ÞkikjT 2
2;

hhijni ¼
2α5
α67

ðσPij þ σ̄k̂ik̂jÞT 1; hpijni ¼ α5
α67

ωPijT 1; hniπji ¼ ωSij;

hπihjki ¼ −4iðPiðjkkÞT 3 þ kik̂jk̂kT 2Þ; hnni ¼ α25σ

α267
T 1; ð7:5Þ

and

hAAi ¼ hAni ¼ hη̄ηi ¼ 1

α67k4
; ð7:6Þ

where

k̂i ¼
ki
k
; Pij ¼ δij − k̂ik̂j;

Qijkl ¼ k̂ik̂kPjl þ k̂jk̂kPil þ k̂ik̂lPjk þ k̂jk̂lPik;

Q ¼ ω4 þ ½4ρð2λ2 þ 2λ − 1Þκ̄ − ρ2�
ω2k4

1 − λ
þ 4κ̄ρðρ2 þ 4λ2κ̄ρÞk8;

T 1 ¼ ðω2 − ρ2σk4Þ−1; T 2 ¼ ðω2 þ 2ρρ1k4Þ−1;
T 3 ¼ ðω2 þ 2ρk4Þ−1; Sij ¼ 2PijT 3 þ 2k̂ik̂jT 2;

ρ1 ¼ 2ð1 − λÞð1þ κÞ; ρ2 ¼ 4α1 −
α25
α67

: ð7:7Þ
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All the propagators in the list (7.5) satisfy the condition of
regularity, whenever the constants satisfy the following
bounds:

ρ > 0; ð1 − λÞð1þ κÞ > 0;�
1 − λ

1 − 2λ

��
4α1 −

α25
α6 þ α7

�
< 0: ð7:8Þ

As in the (3þ 1) case, the propagators involving the fields
A; η; η̄ are irregular. The degree of superficial divergence of
this theory is Ddiv ≤ 4. Cancellation of irregular loops
works in the same fashion as the (3þ 1) case [11,12]. A
similar background-field formulation can be done. With
these results, the renormalization of the (2þ 1)-dimen-
sional Hořava theory is achieved by following the same
steps.

VIII. CONCLUSIONS

We have presented the proof of renormalization of the
nonprojectable Hořava theory, adopting the background-
field approach developed by Barvinsky et al. for gauge
theories [15]. This approach implies that, once the counter-
terms have been considered, the renormalized action
preserves the BRST structure with the background fields.
We have studied the theory in three spatial dimensions,

managing all the inequivalent terms of the Lagrangian that
are dominant at the ultraviolet (the z ¼ 3 terms), and
contribute to the propagators. We highlight the fact that

we have arrived at a manifest BRST invariant form of the
action within the Hamiltonian formalism of the BFV
quantization; only some integrations on ghost canonical
momenta were required. This holds in part thanks to the
compatibility of the Hamiltonian formalism with the FDiff
symmetry, as indeed happens in the classical theory (and
even in general relativity). Moreover, we have succeeded in
implementing the BRST transformations of the variables
associated with the measure of the second-class constraints,
in such a way that all these variables enter in the BRST
symmetry on the same footing as the rest of the variables.
Another crucial ingredient for the proof is the previous
result about the cancellation of irregular loops. The
multiplicative divergences on the direction of the frequency
produced by irregular loops are the only dangerous effects
of the irregular propagators. But they cancel themselves
completely. In the direction of the spatial momentum,
these propagators behave in the same way as the regu-
lar ones.
The nonprojectable Hořava theory is a consistent quan-

tum theory, unitary and renormalizable, that might yield the
classical dynamics of general relativity at the limit of large
distances, where higher-order derivatives can be neglected.
Once the proof of renormalization has been given, studies
on the renormalization flow can be undertaken. A natural
question is whether the flow of the coupling constants of
the z ¼ 1 terms, which are the ones dominant at large
distances, tends to the case when the theory reproduces
general relativity.

[1] P. Hořava, Quantum gravity at a Lifshitz point, Phys. Rev. D
79, 084008 (2009).

[2] D. Blas, O. Pujolas, and S. Sibiryakov, Consistent extension
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grangian of the Hořava theory and its nonlocalities, Phys.
Rev. D 105, 024065 (2022).

[9] P. Senjanovic, Path integral quantization of field theories
with second class constraints, Ann. Phys. (N.Y.) 100, 227
(1976); 209, 248(E) (1991).

[10] E. S. Fradkin, Acta Universitatis Wratislaviensis No. 207, in
Proceedings of X-th Winter School of Theoretical Physics in
Karpacz (Wydawnictwo Uniwersytetu Wroclawskiego Sp.,
Poland, 1973).

[11] J. Bellorín, C. Bórquez, and B. Droguett, Cancellation of
divergences in the nonprojectable Hořava theory, Phys. Rev.
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the Hořava theory: Cancellation of divergences, Phys. Rev.
D 109, 084007 (2024).

[13] D. Anselmi and M. Halat, Renormalization of Lorentz
violating theories, Phys. Rev. D 76, 125011 (2007).

[14] D. Anselmi, Weighted power counting and Lorentz violat-
ing gauge theories. I. General properties, Ann. Phys. (Am-
sterdam) 324, 874 (2009).

[15] A. O. Barvinsky, D. Blas, M. Herrero-Valea, S. M.
Sibiryakov, and C. F. Steinwachs, Renormalization of gauge
theories in the background-field approach, J. High Energy
Phys. 07 (2018) 035.

RENORMALIZATION OF THE NONPROJECTABLE HOŘAVA … PHYS. REV. D 110, 084020 (2024)
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