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RESUMEN 

El hidrógeno verde (H2V) se presenta como una solución energética sustentable para reducir 

emisiones de gases de efecto invernadero, donde Chile destaca por su alto potencial en 

energías renovables y costos de producción. En este contexto, la optimización de 

catalizadores para la reacción de evolución de hidrógeno (HER) es fundamental, 

especialmente ante el alto costo y escasez de materiales nobles como el platino. Como 

alternativa, los boruros bidimensionales de metales de transición (MBenes) surgen como 

candidatos prometedores. En este trabajo se utilizan modelos de aprendizaje automático 

entrenados con descriptores químicos derivados de simulaciones computacionales sobre 180 

sistemas MBene, incluyendo estructuras dopadas, para predecir la energía libre de adsorción 

de hidrógeno (ΔGH) y así identificar catalizadores potencialmente eficientes y económicos. La 

investigación reproduce la metodología de Sun et al. (2020) e incorpora cuatro algoritmos 

(SVR, Random Forest, XGBoost y MLP). Los resultados indican que XGBoost y Random 

Forest son los modelos con mejor desempeño, alcanzando altos valores de R² y bajos RMSE 

en el conjunto de prueba, mientras que SVR y, especialmente, MLP muestran un rendimiento 

inferior. La aplicación de esquemas de evaluación reforzada evidenció además la sensibilidad 

de XGBoost a la partición de datos y permitió obtener una estimación más realista de su 

capacidad de generalización. En conjunto, el estudio demuestra que es posible predecir con 

buena precisión ΔGH en MBenes mediante aprendizaje automático y resalta la importancia de 

utilizar evaluaciones robustas basadas en múltiples particiones. Como proyección, se propone 

ampliar el conjunto de datos con nuevas simulaciones y/o resultados experimentales, extender 

la metodología a otras familias de electrocatalizadores y explorar modelos más avanzados e 

interpretables que apoyen el diseño racional de catalizadores para hidrógeno verde. 

Palabras Clave: 

Hidrógeno verde, Reacción de evolución de hidrógeno (HER), Electrocatalizadores, MBenes, 

Materiales bidimensionales (2D), Aprendizaje automático (Machine Learning), XGBoost, 

Random Forest, Support Vector Regression (SVR), Energía libre de adsorción de hidrógeno 

(ΔGH*). 
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ABSTRACT 

Green hydrogen (H2V) is presented as a sustainable energy solution to reduce greenhouse gas 

emissions, with Chile standing out due to its high potential in renewable energies and 

competitive production costs. In this context, the optimization of catalysts for the hydrogen 

evolution reaction (HER) is crucial, especially given the high cost and scarcity of noble 

materials such as platinum. As an alternative, two-dimensional transition-metal borides 

(MBenes) emerge as promising candidates. In this work, machine learning models are trained 

with chemical descriptors derived from computational simulations on 180 MBene systems, 

including doped structures, to predict the free energy of hydrogen adsorption (ΔGH) and thus 

identify potentially efficient and cost-effective catalysts. The study reproduces the 

methodology of Sun et al. (2020) and incorporates four algorithms (SVR, Random Forest, 

XGBoost, and MLP). The results indicate that XGBoost and Random Forest are the best-

performing models, achieving high R² values and low RMSE on the test set, whereas SVR 

and, in particular, MLP show lower performance. The application of reinforced evaluation 

schemes also reveals the sensitivity of XGBoost to data partitioning and enables a more 

realistic estimate of its generalization capability. Overall, the study demonstrates that ΔGH in 

MBenes can be predicted with good accuracy using machine learning and highlights the 

importance of employing robust evaluation strategies based on multiple partitions. As a 

projection, it is proposed to expand the dataset with new simulations and/or experimental 

results, extend the methodology to other families of electrocatalysts, and explore more 

advanced and interpretable models to support the rational design of catalysts for green 

hydrogen production. 

Keywords: 

Green hydrogen, Hydrogen evolution reaction (HER), Electrocatalysts, MBenes, Two-

dimensional (2D) materials, Machine learning, XGBoost, Random Forest, Support Vector 

Regression (SVR), Hydrogen adsorption free energy (ΔGH*). 
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INTRODUCCIÓN 

El hidrógeno verde (H2V) se posiciona como una fuente energética renovable fundamental 

para combatir la crisis climática global, ofreciendo una alternativa limpia que contribuye a la 

reducción significativa de las emisiones de gases de efecto invernadero. A diferencia de la 

producción tradicional de hidrógeno, que depende en gran medida de fuentes fósiles no 

renovables, el H2V se genera exclusivamente a partir de energías renovables, lo que garantiza 

un suministro sostenible. Chile destaca en este ámbito gracias a su abundante potencial en 

energías solar, eólica e hidráulica, con una capacidad energética superior a 1.800 gigavatios 

(GW), muy por encima de su demanda interna (Arenas et al., 2024). Esta ventaja competitiva 

se traduce en costos de producción estimados alrededor de 1 USD/kg para 2030, situando al 

país en una posición favorable frente a competidores internacionales (Ministerio de Energía & 

Barhorst, 2016), (Acosta et al., 2022). 

Actualmente, Chile cuenta con cinco proyectos de hidrógeno verde en evaluación ambiental, 

con inversiones aproximadas de 15.000 millones de dólares y una capacidad productiva que 

superaría las 300 kilotoneladas anuales (Arenas et al., 2024) . Estos proyectos están 

estratégicamente ubicados en regiones como Magallanes, Antofagasta y Valparaíso, con 

inicio previsto entre 2025 y 2026. La demanda nacional e internacional de hidrógeno verde 

sigue en aumento, impulsada por la necesidad de descarbonizar sectores clave como 

transporte, minería e industria, en línea con la meta de carbono-neutralidad para 2050 

(Benavides et al., 2021). Aunque el desarrollo del H2V presenta oportunidades económicas 

significativas, también enfrenta desafíos relacionados con la incertidumbre y la necesidad de 

políticas públicas sólidas que apoyen su consolidación en un contexto global competitivo. 

(Acosta et al., 2022). 

En este sentido, realizar una búsqueda optima y acabada sobre posibles futuros materiales con 

el objetivo de abaratar costos de producción de hidrogeno verde, enfocándose en la obtención 

de catalizadores que permitan promover la reacción de evolución de hidrogeno (Hydrogen 

Evolution Reaction, HER, por sus siglas en ingles); reacción clave en el desarrollo de 

tecnologías en base a la producción de hidrogeno por medio de fuentes de energía renovables 

(Ferriday et al., 2021), (Qadeer et al., 2024). La producción de hidrógeno mediante 

electrolizadores de agua a partir de fuentes de energía renovables, representa una estrategia 

clave para la generación de electricidad sustentable, hacia una aplicación cotidiana de H2V. 

Este objetivo plantea desafíos fundamentales sobre los factores que controlan el desarrollo de 

la HER en condiciones reales. En este contexto, el diseño de materiales tomando en cuenta los 

principios básicos de la HER, permiten acceder a las propuestas concretas para lograr este 

objetivo. Para ello, se requiere involucrar descriptores químicos para explicar los factores 

relevantes que afecten al desarrollo de la HER, los cuales involucran el uso de técnicas 

avanzadas como la espectroscopía, simulaciones moleculares y enfoques químicos, que 

pueden dirigir el diseño de catalizadores prácticos y económicos. Estas estrategias no solo son 

relevantes para la HER, sino también para el desarrollo de dispositivos electroquímicos de 

almacenamiento energético que emplean electrolitos acuosos, ampliando así el impacto de 

esta investigación en el campo de la energía renovable. 

Generalmente, se hace uso de materiales basados en platino (Pt), entre otros, los cuales son 

reconocidos como los catalizadores más efectivos para la reacción de evolución de hidrógeno 

(HER) debido a su bajo requerimiento en energía y a una alta velocidad catalítica, pero su alto 

costo prohibitivo y escasez limitan su aplicación en la vida cotidiana (Shi et al., 2025). Por 

ello, la búsqueda de materiales similares no metálicos nobles (Pt, Pd, Au) y altamente activos 

es un desafío crucial. En este contexto, el uso de materiales bidimensionales (2D), como los 

dicalcogenuros de metales de transición (MS2), derivados de grafeno, entre otros, han 
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mostrado gran potencial debido a su alta área superficial y estructuras ajustables. 

Particularmente, el MoS₂ destaca como una alternativa prometedora, aunque su actividad está 

limitada por su baja conductividad eléctrica y escasez de sitios activos (Niu et al., 2021). En 

este sentido, materiales 2D, como los carburos (MCenes) y nitruros (MNenes) de metales de 

transición y los boruros (MBenes), han captado atención por sus únicas estructuras y 

propiedades prometedoras, especialmente los MBenes debido a la influencia del boro en su 

comportamiento electrónico. Se ha demostrado que MBenes como Pd₂B, Mo₂B₂ y Fe₂B₂ 

poseen gran potencial para HER gracias a su conductividad metálica y variedad estructural 

(Bai et al., 2021). Además, el dopaje con átomos metálicos individuales mejora la actividad 

catalítica al generar más sitios activos y nuevos estados electrónicos, aunque la selección 

óptima de dopantes mediante métodos tradicionales es costosa. La combinación de 

aprendizaje automático (Machine Learning, ML) surge como una herramienta eficaz para 

acelerar el diseño y selección de catalizadores HER basados en MBenes dopados, permitiendo 

predecir rápidamente la variación de la energía libre de Gibbs requerida para que ocurra el 

proceso de la reacción HER, como un indicador clave de actividad catalítica. 

En este trabajo, se presenta una investigación cuantitativa, de carácter predictivo con el fin de 

ampliar un modelo de aprendizaje automático diseñado para predecir la energía libre de 

adsorción de hidrógeno (ΔGH) en materiales tipo MBene empleados como catalizadores en la 

reacción de evolución de hidrógeno (HER) (Li et al., 2023). A través de simulaciones 

computacionales, análisis de datos y técnicas de aprendizaje supervisado, se busca desarrollar 

modelos de regresión capaces de representar con precisión la relación entre descriptores 

fisicoquímicos y los valores de ΔGH obtenidos mediante cálculos computacionales para estos 

sistemas. La metodología se estructura en tres etapas principales: recolección y preparación de 

datos, caracterización y estandarización de descriptores, y entrenamiento y evaluación de 

modelos. El conjunto de datos comprende 180 sistemas MBene (Sun et al., 2020), tanto puros 

como dopados con átomos metálicos individuales, con diversas propiedades estructurales y 

electrónicas. Para garantizar un desempeño robusto, los datos se dividen en subconjuntos de 

entrenamiento y prueba con particiones aleatorias controladas, y se aplican esquemas 

avanzados de validación, especialmente para modelos con tendencia al sobreajuste como 

XGBoost. Este enfoque no solo facilita una predicción fiable de la actividad catalítica, sino 

que también acelera el descubrimiento y optimización de catalizadores HER económicos y 

eficientes. La integración del aprendizaje automático con conocimientos teóricos contribuye 

al avance de tecnologías sostenibles para la producción de hidrógeno mediante un diseño 

informado de catalizadores. 

 

Por lo cual, se establecen los siguientes objetivos: 

Objetivo general 

Crear modelos de Machine Learning (aprendizaje automático) para predecir el ΔGH dado un 

conjunto de moléculas generadas previamente. 

Objetivos específicos 

Objetivo 1: Estandarizar y preparar el conjunto de datos de MBenes para su uso en ML. 

Objetivo 2: Entrenar modelos de aprendizaje automático para predecir GH. 

Objetivo 3: Evaluar y comparar el desempeño de los modelos entrenados.  
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REVISIÓN BIBLIOGRÁFICA 

Fundamentos conceptuales 

Hidrógeno verde y reacción de evolución de hidrógeno 

El hidrógeno verde (H2V) se ha consolidado como un vector energético importante en 

estrategias de descarbonización, pues permite almacenar energía proveniente de fuentes 

renovables y utilizarla posteriormente en procesos industriales, transporte y generación 

eléctrica sin emisiones directas de CO₂. La producción de H2V se basa principalmente en la 

electrólisis del agua alimentada con electricidad renovable, lo que la diferencia de rutas 

convencionales dependientes de combustibles fósiles (Lee et al., 2025), (Khalafallah et al., 

2025) 

En un electrolizador, la reacción global se descompone en la reacción de evolución de 

oxígeno (OER) en el ánodo y la reacción de evolución de hidrógeno (HER) en el cátodo. La 

HER determina en gran medida la eficiencia global del proceso, ya que requiere catalizadores 

capaces de disminuir el sobrepotencial y mantener corrientes elevadas de forma estable. 

Tradicionalmente, el platino ha sido el material de referencia por su actividad casi óptima, 

pero su escasez y alto costo limitan su uso a gran escala, lo que ha impulsado la búsqueda de 

catalizadores alternativos basados en metales abundantes y materiales no nobles (C. Zhang et 

al., 2025). 

Desde el punto de vista teórico, un descriptor central de la actividad hacia HER es la energía 

libre de adsorción de hidrógeno (ΔGH). De acuerdo con el principio de Sabatier, valores de 

ΔGH cercanos a 0.0 eV indican un equilibrio adecuado entre adsorción y desorción: si la 

adsorción es demasiado débil, el hidrógeno no se fija al catalizador; si es demasiado fuerte, no 

se libera con facilidad. Por ello, gran parte de la literatura utiliza ΔGH como variable objetivo 

a predecir y optimizar (Sun et al., 2020), (Yin et al., 2025). 

Materiales de baja dimensionalidad como electrocatalizadores 

El desarrollo de catalizadores alternativos al platino ha puesto especial atención en materiales 

de baja dimensionalidad (0D, 1D y 2D), como nanopartículas, nanotubos y láminas 

atómicamente delgadas. Estos materiales presentan alta relación superficie/volumen, gran 

densidad de sitios activos y estructuras electrónicas ajustables mediante dopaje, defectos o 

formación de heteroestructuras (Li et al., 2023). 

Dentro de este grupo destacan los MXenes y sus análogos ricos en boro conocidos como 

MBenes, compuestos por capas metálicas y capas de carbono o boro, con alta conductividad 

eléctrica y una química superficial versátil, considerados como materiales de 2D. La 

posibilidad de dopar con átomos metálicos aislados, modificar terminaciones superficiales o 

introducir vacancias genera un espacio de diseño muy amplio para optimizar la actividad 

catalítica hacia HER (J. Zhang et al., 2023). 

Otros trabajos han estudiado heteroestructuras 2D más complejas, por ejemplo sistemas 

basados en g-C₃N₄ acoplado a dicalcogenuros de metales de transición (MX₂), donde el 

intercalado de átomos metálicos modula la estructura electrónica y la energía de adsorción de 

hidrógeno. Estudios recientes han mostrado que, combinando cálculos de estructura 

electrónica y modelos de aprendizaje automático, es posible identificar configuraciones 

intercaladas con ΔGH cercanas a cero y actividad comparable a catalizadores nobles 

(Jyothirmai et al., 2024). 

Cálculos DFT y descriptores para HER 

La Teoría del Funcional de la Densidad (DFT) es la herramienta estándar para estudiar la 

actividad electrocatalítica a nivel atómico. A partir de DFT se obtienen energías de adsorción, 
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estructuras optimizadas, densidades de estados y otros parámetros que permiten estimar la 

estabilidad y la reactividad de los sitios activos (Li et al., 2023). 

En el contexto de HER, además de ΔGH, se han propuesto numerosos descriptores 

fisicoquímicos que capturan la relación entre estructura y actividad, tales como: 

• carga de Bader en átomos metálicos y dopantes, 

• energía cohesiva y energía de formación, 

• centro de banda d y parámetros de red, 

• propiedades elementales (radio atómico, electronegatividad, electrones de valencia, 

afinidad electrónica, energías de ionización, etc.). 

Estos descriptores se discuten de forma sistemática en diversas revisiones recientes y estudios 

de caso sobre catalizadores para HER (Yin et al., 2025), (Li et al., 2023), (J. Zhang et al., 

2023). 

Estos descriptores pueden obtenerse directamente de cálculos DFT o de bases de datos de 

propiedades atómicas, y constituyen la base de entrada para los modelos de aprendizaje 

automático cuyo objetivo es predecir ΔGH u otras magnitudes de interés. 

Aprendizaje automático aplicado a electrocatalizadores 

El aprendizaje automático (Machine Learning, ML, por sus siglas en inglés) se ha convertido 

en un componente central de los flujos de trabajo para el diseño de materiales. En HER, su 

objetivo principal es aprender la relación entre un vector de descriptores y propiedades como 

ΔGH, sobrepotencial o estabilidad, a partir de un conjunto de datos generado por DFT o por 

experimentos (C. Zhang et al., 2025), (Ram et al., 2025). 

Modelos clásicos como Regresión Lineal Múltiple, Máquinas de Soporte Vectorial 

(SVM/SVR), Árboles de Decisión, Random Forest, Gradient Boosting y XGBoost se han 

utilizado de forma extensiva en la predicción de propiedades de catalizadores, aprovechando 

su capacidad para manejar relaciones altamente no lineales y espacios de características de 

alta dimensión. Paralelamente, se han explorado redes neuronales profundas y enfoques 

basados en graph neural networks para representar de manera más directa la estructura 

atómica (Khalafallah et al., 2025), (C. Zhang et al., 2025), (Jyothirmai et al., 2024). 

Las revisiones recientes resaltan dos beneficios principales del ML en este contexto: (i) 

reduce drásticamente el número de cálculos DFT necesarios para explorar un espacio de 

materiales, y (ii) permite identificar descriptores clave mediante análisis de importancia de 

variables, SHAP u otras técnicas interpretables, aportando comprensión física adicional 

además de capacidad predictiva (Khalafallah et al., 2025). 

Estado del arte en el uso de aprendizaje automático para HER 

Revisiones recientes y tendencias generales 

En los últimos años han aparecido varias revisiones que sistematizan el uso de ML en 

electrocatalizadores para HER (Lee et al., 2025). Zhang y colaboradores describen un flujo de 

trabajo general que incluye: recopilación y curado de datos, selección de descriptores, 

entrenamiento de modelos supervisados y exploración del espacio de materiales mediante 

predicciones sobre estructuras no calculadas aún por DFT (J. Zhang et al., 2023). 

Por su parte, otros autores se enfocan específicamente en materiales de baja dimensionalidad, 

destacando que la combinación de ML con cálculos de alto rendimiento permite evaluar miles 

de candidatos (MXenes, heteroestructuras 2D, catalizadores de un solo átomo) y filtrar 

aquellos con mejores ΔGH y estabilidad (Yin et al., 2025), (Khalafallah et al., 2025), 

(Jyothirmai et al., 2024) (J. Zhang et al., 2023). Estas revisiones coinciden en que el ML no 

sólo acelera el cribado de nuevos catalizadores, sino que también facilita la construcción de 
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descriptores universales que explican tendencias de actividad a lo largo de familias completas 

de materiales. 

Además, se ha observado un uso creciente de estrategias de ensemble learning (como Random 

Forest y XGBoost) y de técnicas de selección de características para mejorar la precisión y, 

especialmente, la robustez de los modelos cuando el número de muestras es limitado, como 

suele ocurrir en bases de datos derivadas de DFT (Khalafallah et al., 2025), (C. Zhang et al., 

2025), (Jyothirmai et al., 2024). 

Cribado de alto rendimiento asistido por ML 

La integración de ML con esquemas de cribado de alto rendimiento (high-throughput 

screening, en inglés) ha demostrado ser una herramienta muy eficaz para explorar espacios de 

diseño grandes. En estos trabajos se realiza primero un conjunto de cálculos DFT sobre un 

subconjunto de materiales, se entrena un modelo de regresión y luego se utilizan sus 

predicciones para priorizar nuevos candidatos para cálculos adicionales (Yin et al., 2025), 

(Ram et al., 2025). 

Por ejemplo, estudios recientes sobre heteroestructuras g-C₃N₄/MX₂ intercaladas con metales 

de transición (Jyothirmai et al., 2024) han construido conjuntos de cientos de configuraciones 

con diferentes sitios de adsorción de hidrógeno. Una fracción de estas configuraciones se 

evalúa mediante DFT y se emplea para entrenar un modelo de Random Forest, que luego 

predice ΔGH en el resto del espacio, identificando rápidamente combinaciones de metal y 

sustrato con actividad teórica sobresaliente. 

De manera similar, revisiones sobre MXenes muestran cómo la combinación de DFT y 

algoritmos de boosting ha permitido seleccionar, a partir de miles de candidatos, decenas de 

estructuras 2D con |ΔGH| por debajo de 0,2 eV, algunas de las cuales superan incluso la 

actividad prevista para Pt en términos de estabilidad y energía de adsorción (J. Zhang et al., 

2023), (Yin et al., 2025). 

Estos enfoques reflejan cómo se articula el estado del arte mediante un flujo integrado que 

combina DFT, descriptores, modelos de ML y estrategias para explorar el espacio de 

materiales. 

Aplicaciones específicas a MXenes y MBenes: artículo de referencia 

Dentro de este panorama general, los materiales MXene y MBene han recibido atención 

particular como plataformas 2D para HER. Se han reportado numerosos estudios que utilizan 

ML para analizar el efecto del dopaje con metales de transición, la presencia de terminaciones 

superficiales y la sustitución de elementos en la capa metálica sobre ΔGH y la estabilidad (Yin 

et al., 2025), (Khalafallah et al., 2025), (Ding et al., 2024). 

Entre estos trabajos destaca el estudio de Sun et al. (2020), que constituye el artículo de 

referencia de esta tesis. En dicho trabajo, los autores combinan cálculos DFT y aprendizaje 

automático para realizar un cribado acelerado de catalizadores HER en materiales MBene 

basados en boro. A partir de un conjunto de estructuras puras y dopadas con un solo átomo 

metálico, calculan energías de adsorción y un conjunto amplio de descriptores estructurales y 

elementales, incluyendo cargas de Bader, energías cohesivas, centros de banda d y 

propiedades atómicas de los metales implicados. 

Sobre esta base, entrenan varios modelos supervisados (entre ellos Support Vector Regression 

y Random Forest) para predecir ΔGH a partir de los descriptores. Los resultados muestran que 

los modelos basados en árboles, especialmente Random Forest, logran errores de prueba del 

orden de 0,27 eV y permiten identificar materiales como Co₂B₂ y Mn/Co₂B₂ con valores de 

ΔGH cercanos a cero en un amplio rango de coberturas de hidrógeno, lo que los posiciona 

como candidatos particularmente prometedores. 
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Más allá de la predicción, Sun et al. (2020) analizan la importancia relativa de los descriptores 

y concluyen que la variación de la carga de Bader y del centro de banda d en los átomos 

metálicos juega un papel determinante en la actividad catalítica. Esta combinación de cribado 

acelerado, interpretabilidad y foco en MBenes dopados sitúa al trabajo como una contribución 

central dentro del estado del arte, y proporciona el conjunto de datos y la selección de 

descriptores que se adoptan en el presente estudio. 

Síntesis del estado del arte y aporte del presente trabajo 

La literatura revisada muestra que la integración de DFT y aprendizaje automático ha 

permitido avanzar rápidamente en el diseño de electrocatalizadores para HER, en particular en 

sistemas de baja dimensionalidad como MXenes, MBenes y heteroestructuras 2D. Existen 

flujos de trabajo bien establecidos para: construir conjuntos de datos a partir de simulaciones 

de alto costo, definir descriptores fisicoquímicos relevantes, entrenar modelos de regresión 

(SVR, RFR, XGBoost, redes neuronales, entre otros) y explorar de manera sistemática 

grandes espacios de materiales (C. Zhang et al., 2025), (Ram et al., 2025). 

Sin embargo, también se identifican brechas. Muchos trabajos, incluido el propio estudio de 

Sun et al. (2020), se centran en demostrar el rendimiento de uno o dos algoritmos sobre un 

conjunto de datos dado, pero profundizan menos en la comparación sistemática entre modelos 

bajo un mismo esquema de validación. Asimismo, en conjuntos de tamaño moderado (del 

orden de cientos de muestras), la evaluación suele basarse en una o pocas particiones del 

conjunto de datos, lo que puede subestimar la variabilidad estadística y conducir a 

estimaciones optimistas del desempeño real en generalización (Yin et al., 2025), (Ding et al., 

2024). 

En este contexto, el presente trabajo de título se posiciona como una contribución 

principalmente metodológica dentro del estado del arte. Por un lado, replica la metodología 

del artículo de referencia de Sun et al. (2020) para los modelos de Random Forest y SVR, 

utilizando el mismo conjunto de datos de 180 sistemas MBene y los mismos descriptores 

estandarizados derivados de DFT, lo que asegura una comparación directa con los resultados 

originales. Por otro lado, extiende el análisis incorporando dos modelos adicionales de uso 

extendido en ciencia de datos, XGBoost y un perceptrón multicapa (MLP), ambos 

ampliamente utilizados en regresión sobre conjuntos de datos tabulares y en predicción de 

propiedades de materiales (Chen & Guestrin, 2016), (Fu et al., 2022), (Lu et al., 2024). 

Asimismo, se aplica a XGBoost un esquema de evaluación reforzado basado en múltiples 

particiones aleatorias y estadísticos resumen (promedios y desviaciones estándar de las 

métricas), en línea con las recomendaciones metodológicas sobre validación cruzada repetida 

y estrategias de evaluación robusta para evitar conclusiones demasiado optimistas basadas en 

una sola partición de entrenamiento/prueba (Kohavi, 2000), (Sweet et al., 2023). 
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METODOLOGÍA 

La metodología de este trabajo se diseña como un estudio cuantitativo, de carácter no 

experimental y alcance explicativo, basado en la replicación y extensión del modelo de 

aprendizaje automático propuesto en el artículo de referencia (Sun et al., 2020), cuyo objetivo 

es predecir la energía libre de adsorción del hidrógeno (ΔGH) en materiales tipo MBene 

utilizados como catalizadores de la reacción de evolución de hidrógeno (HER). La 

investigación se desarrolla íntegramente mediante simulación computacional, análisis de 

datos y aplicación de técnicas de Machine Learning. 

En términos de diseño, el estudio utiliza aprendizaje supervisado, ya que la variable objetivo 

ΔGH se encuentra disponible para cada muestra en el conjunto de datos. La meta principal es 

entrenar modelos de regresión capaces de aproximar la relación entre los descriptores 

fisicoquímicos (características de entrada) y el valor objetivo (etiqueta), para así guiar en un 

futuro el diseño de materiales para su uso en H2V. La metodología se estructura en tres etapas 

principales: (1) recolección y preparación de los datos, (2) caracterización y estandarización 

de los descriptores, y (3) entrenamiento y evaluación de modelos de aprendizaje automático. 

Área de estudio y diseño de la investigación 

El área de estudio corresponde al diseño, entrenamiento y evaluación de modelos de regresión 

supervisada para predecir ΔGH a partir de descriptores de materiales MBenes, tanto puros 

como dopados con átomos metálicos individuales. El conjunto de datos y las definiciones de 

las variables provienen directamente del artículo de referencia, donde ΔGH se calcula 

mediante Teoría del Funcional de la Densidad (DFT). 

El estudio se clasifica como: 

 Cuantitativo: se trabaja con variables numéricas continuas y métricas estadísticas para 

evaluar el rendimiento de los modelos. 

 No experimental: no se manipulan materiales en laboratorio; se emplean datos ya 

generados mediante simulaciones DFT. 

 Correlacional–explicativo: se busca determinar qué modelos capturan mejor la 

relación entre los descriptores y ΔGH. 

 Cada sistema MBene constituye una unidad de análisis individual, representada por un 

vector de descriptores y un valor escalar ΔGH. 

Recolección de datos 

Origen del conjunto de datos 

El conjunto de datos empleado se basa en el set de datos publicado en el artículo de 

referencia, compuesto por 180 sistemas MBene (puros y dopados con un solo átomo). En el 

estudio original, estos sistemas se obtienen a partir de: 

 Modelación DFT de estructuras M₂B₁ y M₂B₂ para metales de las series 3d, 4d y 5d. 

 Cálculo de ΔGH combinando energía de adsorción, energía de punto cero y 

contribución entrópica. 

 Obtención de descriptores estructurales y elementales como energías cohesivas, cargas 

de Bader, centro de banda d, radios atómicos y propiedades electrónicas. 
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El repositorio oficial de los autores incluye el archivo (ML_Figure5.xlsx) que contiene los 

descriptores originales. Este archivo presenta características con escalas heterogéneas, lo cual 

perjudica el rendimiento de los modelos. Por ello, se realizó un proceso de estandarización de 

todas las variables numéricas, generando un nuevo archivo que constituye la base utilizada en 

las etapas posteriores. 

La lectura y manipulación de este archivo se realizó mediante la librería pandas, separando el 

conjunto en una matriz de características, y una variable objetivo, correspondiente a ΔGH. 

División en conjuntos de entrenamiento y prueba 

Para los modelos SVR, RFR y MLP, se replica la metodología del artículo de referencia, 

dividiendo el conjunto de datos en 75 % para entrenamiento y 25 % para prueba. Esto se 

realiza mediante partición aleatoria controlada por una semilla fija (42), lo que asegura la 

reproducibilidad del análisis en diferentes ejecuciones. 

Sin embargo, el modelo XGBoost requirió un esquema de validación más detallado. Debido a 

su mayor capacidad de modelar relaciones complejas y a su propensión al sobreajuste en 

conjuntos moderados, se estableció una evaluación basada en: 

 50 particiones distintas del conjunto de datos 

 con divisiones 70% / 30% para entrenamiento y prueba 

 cada una definida por una semilla diferente 

 posterior generación de métricas promedio y desviación estándar. 

Este procedimiento permitió obtener métricas más confiables y representativas del 

rendimiento real del modelo, lo cual era fundamental dada la expectativa teórica de que 

XGBoost fuese el método con mejor capacidad predictiva entre todos los modelos 

implementados. 

Caracterización y estandarización de los datos 

Descriptores utilizados 

Los descriptores disponibles provienen del artículo de referencia (Sun et al., 2020), donde se 

combinan propiedades obtenidas mediante DFT con propiedades elementales. Si bien estos 

descriptores tienen un trasfondo químico importante, en el contexto de esta tesis su uso se 

limita al ámbito computacional: funcionan como variables predictoras numéricas para los 

modelos de Machine Learning. 

Dentro de este conjunto se distinguen dos categorías: 

a) Descriptores calculados mediante DFT 

 Energía cohesiva del material 

 Carga de Bader del metal superficial y del átomo dopante 

 Centro de banda d 

 Parámetros de red 

 Longitudes de enlace metal–metal y metal–boro 

b) Descriptores elementales 

 Masa atómica, radio atómico y electrones de valencia 
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 Electronegatividad 

 Afinidad electrónica 

 Primera energía de ionización 

Estos descriptores constituyen una representación suficiente para capturar relaciones químicas 

relevantes sin necesidad de profundizar en análisis desde la química de materiales, ya que el 

propósito de este trabajo se sitúa en identificar patrones mediante técnicas informáticas. 

Estandarización de características 

El artículo de Sun et al. (2020) establece que los descriptores deben regularizarse antes del 

entrenamiento para mejorar la estabilidad numérica. En este trabajo se replicó este criterio 

aplicando estandarización mediante z-score. Con este método, cada variable adquiere media 

cero y desviación estándar uno, lo que homogeniza las escalas y favorece el desempeño de 

modelos sensibles (como SVR, MLP y XGBoost). Este procedimiento se realizó mediante la 

librería scikit-learn. 

El proceso consistió en: 

1. Identificar todas las columnas numéricas. 

2. Ajustar un escalador para calcular media y desviación estándar del conjunto de datos 

original. 

3. Transformar cada descriptor a su versión estandarizada. 

4. Conservar la variable objetivo sin modificar. 

5. Guardar el resultado en un archivo nuevo para asegurar trazabilidad. 

Entrenamiento y evaluación de modelos de aprendizaje automático 

La etapa final consiste en entrenar, optimizar y comparar cuatro modelos supervisados: 

Random Forest (RFR), Support Vector Regression (SVR), Multilayer Perceptron (MLP) y 

XGBoost (XGB). La implementación se basa en el uso de scikit-learn y xgboost, en conjunto 

con técnicas de validación cruzada y evaluación estadística. 

Entorno de implementación 

El desarrollo se llevó a cabo en Python, utilizando pandas y numpy para manipulación de 

datos; scikit-learn para modelos, preprocesamiento y validación; xgboost para el modelo 

basado en boosting de gradiente y matplotlib para generación de gráficos. 

Esquema general de entrenamiento 

Para los modelos SVR, RFR y MLP se empleó el siguiente flujo: 

1. Optimización mediante GridSearchCV (CV de 10 pliegues): Se definieron 

hiperparámetros para cada modelo y se seleccionaron los mejores según la métrica R². 

2. Entrenamiento del mejor modelo: Cada modelo resultante se ajusta solamente sobre el 

conjunto de entrenamiento. 

3. Evaluación: Se calculan métricas de rendimiento (RMSE y R²) en entrenamiento y prueba 

para identificar sobreajuste o subajuste. 

4. Visualización mediante gráficos de paridad: Cada modelo genera un gráfico predicción–

valor real, siguiendo el estilo del artículo base. 
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Modelos replicados del artículo: SVR y RFR 

Los modelos SVR y RFR se implementan siguiendo la metodología del estudio original: 

 SVR, utilizando Kernel RBF, regularización C y parámetros gamma para capturar 

relaciones no lineales. 

 RFR, empleando múltiples árboles y aleatorización para controlar la varianza del 

modelo. 

 Ambos modelos se entrenaron con validación cruzada y posterior evaluación en el 

conjunto de prueba. 

Extensión metodológica: MLP y XGBoost 

MLP Regressor: 

El modelo MLP se incorpora como una aproximación adicional basada en redes neuronales 

densas. Se optimizaron: 

 arquitectura (capas y neuronas) 

 función de activación 

 parámetros de regularización L2 

 tasa de aprendizaje 

Se utilizó entrenamiento con detención temprana para evitar sobreajuste. 

XGBoost Regressor: 

Debido a su alta capacidad predictiva, XGBoost se sometió a un proceso más riguroso: 

1. Búsqueda inicial de hiperparámetros (CV 10-fold) 

Se optimizaron parámetros relacionados con profundidad, regularización, submuestreo 

y tasa de aprendizaje. 

2. 50 repeticiones con semillas distintas 

Cada repetición utiliza una nueva partición aleatoria 70/30. 

Esto permite evaluar la estabilidad estadística del modelo. 

3. Cálculo de métricas medias y desviaciones estándar 

Se genera un resumen del desempeño medio del modelo. 

4. Selección de la mejor repetición para visualización 

El gráfico que se presenta corresponde a la ejecución con R² más alto en el conjunto 

de prueba. 

Este enfoque proporciona resultados más confiables para un modelo potencialmente superior 

pero más propenso al sobreajuste. 

Esquema metodológico 

El proceso seguido en esta tesis puede resumirse en las siguientes etapas: 

1. Obtención del conjunto de datos original. 

2. Estandarización de los descriptores. 

3. Separación de características y variable objetivo. 
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4. División del conjunto de datos en entrenamiento y prueba. 

5. Entrenamiento de los modelos SVR, RFR y MLP mediante validación cruzada. 

6. Implementación de un pipeline único para XGBoost basado en múltiples repeticiones. 

7. Evaluación comparativa mediante métricas y gráficos de paridad. 

Este diseño metodológico es replicable, sistemático y coherente con las buenas prácticas de 

aprendizaje automático, además de aportar una contribución original mediante la evaluación 

reforzada del modelo XGBoost. 

 



 

22 

 

 

INGENIERÍA CIVIL INFORMÁTICA | 2025 

 

UNIVERSIDAD SAN SEBASTIÁN | FACULTAD DE INGENIERÍA 

 
RESULTADOS 

Análisis descriptivo del conjunto de datos 

Distribución de los descriptores estandarizados 

La Figura 1 muestra los diagramas de violín correspondientes a las variables empleadas como 

descriptores en los modelos de aprendizaje automático, separando en la parte superior las 

características calculadas mediante DFT y en la parte inferior las características elementales. 

En ambos casos, los valores se representan en términos de puntaje z. 

 
Figura 1 – Violines. 

Se observa que, para la mayoría de los descriptores, la masa principal de los datos se 

concentra en el entorno de 0 y dentro del intervalo aproximado          . Algunas 

variables presentan colas algo más extendidas, pero en general la estandarización produce 

distribuciones centradas y comparables en escala entre sí. Esta representación confirma que el 

conjunto de entrada utilizado en los modelos está previamente normalizado y que no se 

aprecian valores extremos aislados a gran distancia del resto de las observaciones. 
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Correlación entre descriptores 

La Figura 2 presenta el mapa de correlaciones de Pearson entre los descriptores 

estandarizados, representado como triángulo inferior con círculos coloreados. El tamaño de 

cada marcador es proporcional al valor absoluto del coeficiente de correlación, mientras que 

el color indica el signo (correlaciones positivas en tonos rojizos y negativas en tonos 

azulados). 

 
Figura 2 - Mapa de correlación de Pearson. 

El mapa evidencia la existencia de varios pares de descriptores con correlaciones moderadas o 

altas, especialmente dentro de grupos de variables que comparten origen físico similar (por 

ejemplo, parámetros estructurales o propiedades electrónicas de los mismos elementos). En 

contraste, otros pares muestran marcadores de pequeño tamaño, lo que indica correlaciones 

próximas a cero y, por tanto, baja redundancia lineal entre esas características. Estos patrones 

de correlación constituyen el contexto estadístico en el que se entrenan posteriormente los 

modelos de regresión. 

Resultados de los modelos de regresión 

En esta sección se presentan los resultados obtenidos para los distintos modelos supervisados 

utilizados para predecir la energía libre de adsorción de hidrógeno Δ    a partir de los 

descriptores definidos, con el fin de evaluar la espontaneidad del proceso. En todos los casos 

se emplea una partición del conjunto de datos en entrenamiento y prueba, y se reportan el 

error cuadrático medio (RMSE) y el coeficiente de determinación   para ambas particiones. 

Los gráficos de paridad muestran en el eje horizontal los valores predichos por el modelo y en 

el eje vertical los valores calculados por DFT, junto con la recta identidad como referencia. 



 

24 

 

 

INGENIERÍA CIVIL INFORMÁTICA | 2025 

 

UNIVERSIDAD SAN SEBASTIÁN | FACULTAD DE INGENIERÍA 

 
Modelo MLP 

La Figura 3 corresponde al gráfico de paridad del perceptrón multicapa (MLP). En la esquina 

superior izquierda se indican las métricas obtenidas: el modelo presenta un RMSE del orden 

de 0,26 eV en entrenamiento y 0,20 eV en prueba, con valores de   aproximados de 0,39 y 

0,59, respectivamente. Los puntos verdes representan las muestras de entrenamiento y los 

puntos azules las muestras de prueba. 

 
Figura 3 - Modelo de Regresión MLP. 

En el diagrama (Figura 3) se aprecia una dispersión apreciable alrededor de la recta identidad, 

tanto en entrenamiento como en prueba. Aun así, la mayoría de las observaciones se sitúan en 

torno al rango de Δ    cubierto por el conjunto de datos original, sin concentraciones 

anómalas en regiones específicas del eje de predicción. 
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Modelo Random Forest Regression 

La Figura 4 muestra el gráfico de paridad correspondiente al modelo de Random Forest 

Regression (RFR). En este caso, las métricas indicadas en la figura señalan valores de RMSE 

cercanos a 0,19 eV para el conjunto de entrenamiento y 0,08 eV para el conjunto de prueba, 

mientras que los coeficientes   se sitúan aproximadamente en 0,67 (entrenamiento) y 0,94 

(prueba). 

 
Figura 4 - Modelo RFR. 

En el diagrama de dispersión (Figura 4) se observa que los puntos de entrenamiento se 

agrupan en torno a la recta identidad, y las muestras de prueba también se alinean de forma 

más estrecha con respecto a la referencia en comparación con el caso del MLP. El rango de 

valores de Δ    representado es similar al de los otros modelos, y no se aprecian vacíos 

evidentes en regiones particulares del espacio de predicción. 
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Modelo Support Vector Regression 

La Figura 5 presenta el gráfico de paridad para el modelo de Support Vector Regression 

(SVR). Las métricas mostradas en el recuadro indican un RMSE aproximado de 0,17 eV en 

entrenamiento y 0,13 eV en prueba, con valores de   alrededor de 0,75 y 0,83, 

respectivamente. 

 
Figura 5 - Modelo SVR. 

En este caso, tanto las muestras de entrenamiento como las de prueba se distribuyen cercanas 

a la recta identidad, con una dispersión intermedia si se compara visualmente con los casos de 

MLP y Random Forest. El modelo SVR mantiene una alineación razonablemente uniforme a 

lo largo de todo el rango de valores de Δ    considerados. 
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Modelos XGBoost 

Las Figuras 6–8 recopilan los resultados obtenidos con las distintas configuraciones evaluadas 

del modelo XGBoost. Cada gráfico corresponde a un ajuste concreto del modelo, 

manteniendo en todos los casos la misma estructura general: puntos verdes para el conjunto 

de entrenamiento, puntos azules para el conjunto de prueba y la recta identidad como 

referencia. 

 
Figura 6 - Primer Modelo XGBoost. 

En la primera configuración (Figura 6), asociada al modelo obtenido a partir de los 

hiperparámetros seleccionados mediante validación cruzada de 10 pliegues, las métricas 

indicadas muestran un RMSE cercano a 0,14 eV para el conjunto de entrenamiento y 

alrededor de 0,06 eV para el conjunto de prueba, con valores de   en torno a 0,82 

(entrenamiento) y 0,96 (prueba). La nube de puntos aparece concentrada alrededor de la recta 

identidad, especialmente para las muestras de prueba, y las predicciones cubren todo el rango 

de valores de     presente en el conjunto de datos. 
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Figura 7 - Segundo modelo XGBoost. 

En una segunda configuración (Figura 7), asociada a un ajuste alternativo del modelo con una 

partición distinta del conjunto de datos, las métricas se sitúan en un RMSE aproximado de 

0,17 eV para el conjunto de entrenamiento y de 0,04 eV para el conjunto de prueba, con 

coeficientes   cercanos a 0,72 y 0,98, respectivamente. En este caso, la dispersión de las 

muestras de entrenamiento respecto de la recta identidad es baja y la nube de puntos de 

prueba se mantiene alineada con dicha recta, aunque con una distribución algo diferente a la 

observada en la primera configuración. 

 
Figura 8 - Tercer modelo XGBoost. 

Finalmente, la Figura 8 muestra el gráfico de paridad correspondiente a una tercera 

configuración de XGBoost en la que se emplea un esquema de evaluación reforzado. En esta 

configuración se generan múltiples particiones aleatorias del conjunto de datos y se selecciona 

una de las ejecuciones para representar gráficamente los resultados. El recuadro de métricas 
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indica valores de RMSE del orden de 0,16 eV en entrenamiento y 0,17 eV en prueba, con 

coeficientes   próximos a 0,72 y 0,73, respectivamente. De manera complementaria, el 

resumen estadístico de las 100 repeticiones realizadas muestra valores promedio de 

  cercanos a 0,97 en entrenamiento y 0,63 en prueba, lo que cuantifica el comportamiento 

medio del modelo bajo distintos cortes aleatorios del conjunto de datos. 

Importancia de las características 

La Figura 9 presenta la importancia de las 

características calculada mediante el modelo de 

Random Forest a partir de la técnica de 

“permutation importance” aplicada sobre el 

conjunto de prueba. Las barras horizontales 

muestran el descenso promedio en la métrica de 

desempeño cuando se permuta aleatoriamente 

cada descriptor, ordenadas de mayor a menor 

impacto. 

En este gráfico se observa que los descriptores 

etiquetados como n, a y L(M/D–M) se sitúan en 

las primeras posiciones, con valores de 

importancia superiores al resto de las variables. 

A continuación aparecen descriptores como db, F, Z_M y M_D, con valores de importancia 

intermedios, mientras que el grupo restante de variables presenta contribuciones 

progresivamente menores. 

 
Figura 10 - Importancia características (top 10). 

La Figura 10 muestra una versión reducida del mismo análisis, en la que se representan 

únicamente los diez descriptores con mayor importancia según la métrica de permutación. 

Esta representación resume visualmente qué variables ejercen el mayor efecto sobre las 

predicciones de Δ    dentro del modelo de Random Forest, manteniendo el mismo orden 

relativo observado en la figura completa. 

  

Figura 9 - Importancia características (extendido). 
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DISCUSIONES (con la literatura y análisis) 

Los resultados obtenidos confirman, en primer lugar, que los algoritmos basados en árboles y 

márgenes máximos se adaptan mejor al tamaño y naturaleza del conjunto de datos que el 

perceptrón multicapa. Mientras MLP alcanza un desempeño moderado, Random Forest, SVR 

y especialmente XGBoost logran errores claramente menores y coeficientes de determinación 

más altos. Esto es consistente con el estado del arte, donde se destaca que, para conjuntos de 

datos de algunas centenas de muestras, los modelos de ensamble y los métodos kernel suelen 

superar a las redes neuronales densas, que requieren volúmenes de datos mayores para 

explotar su capacidad representacional (Khalafallah et al., 2025), (Li et al., 2023), (C. Zhang 

et al., 2025). 

Dentro de este grupo, los resultados sitúan a XGBoost como el modelo con mejor capacidad 

predictiva puntual, ya que en la configuración seleccionada mediante validación cruzada 

alcanza los valores más altos de R
2
 en el conjunto de prueba. Sin embargo, el análisis con 

múltiples semillas revela que este rendimiento es sensible a la partición entrenamiento/prueba: 

al promediar sobre distintas divisiones del conjunto de datos, el desempeño de XGBoost se 

acerca al observado en Random Forest y SVR y aparece un desfase claro entre el ajuste en 

entrenamiento y en prueba. Esto indica que la evaluación basada en una única partición puede 

conducir a una visión demasiado optimista de la capacidad de generalización del modelo 

(Khalafallah et al., 2025), (Ram et al., 2025). 

Desde una perspectiva metodológica, el esquema de repeticiones aplicado a XGBoost muestra 

ser una herramienta útil para cuantificar esta variabilidad y aporta una visión más honesta del 

comportamiento del algoritmo. En consecuencia, aunque la configuración “óptima” de 

XGBoost entrega las mejores métricas en un caso concreto, la configuración evaluada 

mediante repeticiones se interpreta como el mejor modelo de XGBoost en sentido robusto, y 

es la que resulta más adecuada para comparar con Random Forest y SVR (Sun et al., 2020). 
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CONCLUSIONES 

En relación con el Objetivo 1 (crear/obtener el set de datos), la tesis logra reconstruir de forma 

consistente el conjunto de 180 sistemas MBene descrito en el estudio de referencia, 

incorporando los mismos descriptores estructurales y elementales en formato estandarizado. 

Respecto del Objetivo 2 (entrenar modelos), se implementan y ajustan cuatro algoritmos de 

aprendizaje supervisado —SVR, Random Forest, MLP y XGBoost— siguiendo prácticas 

actuales de selección de hiperparámetros y validación. Finalmente, en cuanto al Objetivo 3 

(evaluar modelos), se obtienen y comparan métricas de error y coeficientes de determinación 

en entrenamiento y prueba, lo que permite identificar a XGBoost, Random Forest y SVR 

como los modelos más competitivos, dejando al MLP como alternativa menos adecuada para 

el tamaño de muestra disponible. 

En conjunto, estos resultados cumplen el objetivo general de la tesis: se construyen modelos 

de Machine Learning capaces de predecir     en la familia de MBenes estudiada, y se 

demuestra que su desempeño es comparable e incluso superior al de los modelos 

originalmente reportados para este conjunto de datos. La investigación responde así a la 

pregunta planteada, mostrando que es posible reproducir la metodología previa y, al mismo 

tiempo, extenderla mediante la incorporación de XGBoost y de un esquema de evaluación 

más exigente basado en repeticiones. 

La principal limitación del trabajo es el tamaño y alcance del conjunto de datos: se dispone de 

solo 180 estructuras pertenecientes a una misma familia de materiales y todas las etiquetas 

provienen de cálculos DFT. Esto restringe la generalización de los modelos a otros tipos de 

electrocatalizadores y hace que cualquier sesgo asociado a las simulaciones se traslade 

directamente a las predicciones. Además, el análisis con repeticiones se aplica en detalle solo 

a XGBoost; extender el mismo procedimiento a SVR y Random Forest permitiría una 

comparación aún más equilibrada entre algoritmos. 

A partir de estos resultados se abren varias oportunidades de trabajo futuro. Entre ellas, 

ampliar el conjunto de datos combinando nuevas simulaciones DFT y datos experimentales, 

aplicar esquemas de validación cruzada anidada a todos los modelos, incorporar técnicas de 

interpretabilidad avanzadas y explorar arquitecturas específicas para materiales basadas en 

grafos. Estas extensiones permitirían mejorar la capacidad de generalización de los modelos, 

trasladar el enfoque a otras familias de catalizadores para HER y consolidar el uso de 

aprendizaje automático como herramienta de apoyo en el diseño computacional de 

electrocatalizadores para hidrógeno verde (H2V). Con esto, las herramientas computacionales 

basadas en aprendizaje automático favorecen un desarrollo en vías de fomentar la 

implementación del hidrógeno verde (H2V) como una fuente energética renovable 

fundamental para combatir la crisis climática global, el que es un eje estratégico de Chile. 
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NOTAS AL PIE DE PÁGINA: 

Se proporcionan términos para facilitar la comprensión del lector: 

-Machine Learning (ML): Machine learning (aprendizaje automático, en español) es un 

conjunto de métodos computacionales que permiten a un modelo “aprender” patrones a partir 

de datos, sin ser programado explícitamente para cada tarea específica. En este trabajo se usa 

para entrenar modelos que predicen propiedades (por ejemplo, ΔGH*) a partir de descriptores 

fisicoquímicos. 

-MXenes: familia de materiales bidimensionales (2D) basados en carburos, nitruros o 

carbonitruros de metales de transición, con fórmula general Mₙ₊₁Xₙ (donde M es un metal de 

transición y X es C y/o N). Se caracterizan por su alta conductividad eléctrica, estructura en 

capas y superficies funcionalizables, lo que los hace atractivos para aplicaciones 

electroquímicas y catalíticas. (Los MBenes son análogos ricos en boro de esta familia, 

reemplazando C/N por B). 

-Coeficiente de determinación R
2
: métrica que mide qué fracción de la variabilidad de los 

datos observados es explicada por el modelo. Toma valores entre    y 1, donde 1 indica una 

predicción perfecta y valores cercanos a 0 indican que el modelo explica poca varianza 

(similar a usar la media como predicción). 

-Desviación estándar (σ): medida de dispersión que indica cuánto se alejan, en promedio, los 

datos respecto de su valor medio. Cuanto mayor es la desviación estándar, más “extendidos” 

están los datos alrededor de la media. 

-Error cuadrático medio de la raíz (RMSE): métrica de error que se define como la raíz 

cuadrada del promedio de los errores al cuadrado entre valores predichos y valores reales. Se 

expresa en las mismas unidades que la variable objetivo (por ejemplo, eV para ΔGH*) y 

valores menores indican un mejor ajuste del modelo. 

-pipeline: es una secuencia de etapas de procesamiento donde la salida de una etapa se 

convierte en la entrada de la siguiente, permitiendo procesar datos o instrucciones de forma 

continua y paralela, aumentando la eficiencia. 
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ANEXOS 

Repositorio del código del artículo de referencia: https://github.com/xilingyi/sx_MBene  

https://github.com/xilingyi/sx_MBene

