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Resumen 

El propósito de esta tesis fue implementar modelos clasificadores de machine 

learning que puedan predecir eficazmente la capacidad molecular de atravesar la 

Barrera Hematoencefálica. Con el fin de acelerar el proceso de síntesis de nuevos 

fármacos para tratar enfermedades del Sistema Nervioso Central. 

Esto se hizo a través del entrenamiento de 4 modelos clasificadores 

diferentes: KNN, SVM, Random Forest y Gaussian Naive Bayes. Para esto se usó 

la base de datos pública B3DB la cual contiene moléculas previamente etiquetadas, 

luego se realizó un proceso de selección de características aplicando Información 

Mutua y RFEcv de manera continua. Finalmente, los parámetros de los modelos 

fueron optimizados a través de la técnica grid search. Se crearon versiones de los 

modelos sin selección de características con fines comparativos. 

Luego de este proceso se obtuvo como principal resultado un modelo 

Random Forest que logró un AUC de 0.96 y una Especificidad de 0.93. Además, se 

obtuvieron las importancias de características para el modelo anteriormente 

mencionado, en donde algunas de las principales variables fueron: TPSA, qed y 

NOCount. 

A partir de estos resultados se puede concluir que los modelos sí pueden 

predecir eficazmente la permeabilidad de las moléculas. Además, algunos de los 

modelos generados superan levemente modelos generados por otros autores 

usando los mismos datos.            

 

Palabras clave: Machine learning, Permeabilidad, Random Forest, RFEcv. 
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Abstract 

The purpose of this thesis was to implement machine learning classification 

models that can effectively predict the molecular ability to cross the blood-brain 

barrier. The aim was to accelerate the process of synthesizing new drugs to treat 

diseases of the central nervous system. 

This was done by training four different classification models: KNN, SVM, 

Random Forest, and Gaussian Naive Bayes. For this, the public B3DB database was 

used, which contains previously labeled molecules. Then, a feature selection 

process was performed by continuously applying Mutual Information and RFEcv. 

Finally, the model parameters were optimized using the grid search technique. 

Versions of the models without feature selection were created for comparison 

purposes. 

After this process, the main result was a Random Forest model that achieved 

an AUC of 0.96 and a specificity of 0.93. In addition, the feature importance for the 

model was obtained, where some of the main variables were: TPSA, qed, and 

NOCount. 

Based on these results, it can be concluded that the models can effectively 

predict the permeability of molecules. In addition, some of the models generated 

slightly outperform models generated by other authors using the same data.            

 

Keywords: Machine learning, Permeability, Random Forest, RFEcv
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Introducción 

Hoy en día las enfermedades del sistema nervioso central son una de las 

patologías que afecta a más personas en el mundo, en donde para la mayoría aún 

no hay un tratamiento completamente efectivo. 

Las enfermedades neurodegenerativas, como el Alzheimer o el Parkinson, 

representan uno de los desafíos médicos más complejos de nuestro tiempo. Estas 

patologías no solo no han podido ser tratadas al 100% sino que su naturaleza 

progresiva y devastadora ha causado un temor generalizado en la sociedad por 

mucho tiempo. 

De hecho, solo un 8% de las prescripciones para tratar enfermedades del 

Sistema Nervioso Central (SNC) son efectivos. Lo que demuestra la dificultad 

existente en poder crear fármacos que consigan tratar estas patologías. 

Esto se debe principalmente a la Barrera Hematoencefálica. Esta es una 

estructura totalmente selectiva que cumple la función de proteger el sistema 

nervioso central, esto lo hace regulando el paso de sustancias desde la sangre al 

tejido cerebral, previniendo el paso de toxinas o patógenos dañinos, y de 

desregulaciones hormonales. De esta manera la Barrera Hematoencefálica se 

transforma en un problema para el desarrollo de fármacos enfocados en el SNC ya 

que no permite estos consigan llegar al cerebro y lograr su efecto. 

En los últimos años se han realizado muchos intentos para poder darle fin a 

este permanente problema y cada vez la sociedad se ha acercado más a encontrar 

una cura para estas enfermedades, pero como se mencionó anteriormente aún es 

un desafío por superar. 

Este problema no es solo un desafío médico, sino también económico y 

social. El costo de cuidado de pacientes con Alzheimer/Parkinson es inmenso, y el 

fracaso en encontrar fármacos efectivos que penetren la Barrera Hematoencefálica 

representa millones de pérdidas en investigación y desarrollo. 

Actualmente existen muchos métodos que intentan predecir la permeabilidad 

de las moléculas (habilidad para traspasar la Barrera Hematoencefálica), ya sea 

métodos probados en animales o in vitro, muchos de los cuales requieren muchos 

recursos, tiempo o personas, por lo que son muy costosos. Por ello el desarrollo de 

fármacos efectivos para tratar enfermedades del sistema nervioso central se ve 

retrasado.   
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Es aquí en donde entran los métodos computacionales, en específico el 

machine learning. Esta herramienta es capaz de predecir la efectividad de los 

fármacos en cuestión de segundos, acelerando así el desarrollo de medicamentos 

que logren atravesar la barrera. Esto permite a los investigadores orientar sus 

esfuerzos en compuestos mucho más prometedores. 

En esta tesis se abordará el desafío de la permeabilidad de las moléculas 

usando técnicas de Machine learning. Con el objetivo de clasificar las moléculas 

respecto a su capacidad de atravesar la Barrera Hematoencefálica, a la que en 

adelante nos referiremos como BBB (por sus singles en inglés Blood Brain Barrier). 

En consecuencia, la cualidad de una molécula para atravesar dicha barrera será 

definida como BBB+, mientras que se utilizará BBB- para las que no lo consigan.  

 

Objetivos 

Objetivo General: 

Desarrollar y evaluar modelos de machine learning para predecir 

permeabilidad de moléculas a partir de su caracterización química, con el fin de 

apoyar procesos de diseño y síntesis de fármacos efectivos contra enfermedades 

del Sistema Nervioso Central. 

Objetivos Específicos. 

1. Recolectar, curar y organizar datos moleculares a partir de bases de datos 

públicas.  

2. Generar descriptores moleculares estructurales y fisicoquímicos 

utilizando herramientas computacionales.  

3. Desarrollar modelos predictivos utilizando algoritmos KNN, SVM, 

Random Forest y Naive Bayes ajustando sus hiperparámetros para 

optimizar desempeño. 

4. Evaluar el desempeño de los modelos mediante métricas estadísticas y 

validación cruzada. 
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Revisión bibliográfica 

Marco teórico  

Contexto biológico 

Para iniciar se dará un breve contexto biológico respecto al tema de la 

investigación. 

 

Sistema nervioso central: 

El sistema nervioso central o SNC está compuesto por el cerebro y la médula 

espinal. Este se encarga de recibir información sensorial, procesar dicha 

información y generar una respuesta motora (Squire, 2013). Es así como luego de 

recibir una señal externa el cerebro envía una señal eléctrica a través de la médula 

espinal hacia los músculos y/o glándulas para generar una respuesta. 

Debido a lo anterior el SNC se vuelve un sistema vital para la homeostasis 

en el cuerpo humano. 

Barrera Hematoencefálica BHE o BBB del inglés Blood Brain Barrier: 

La Barrera Hematoencefálica es una barrera selectivamente permeable que 

regula el paso de moléculas desde el torrente sanguíneo hacia el sistema nervioso 

central.  Su principal función es la protección del sistema nervioso central, evitando 

que traspasen toxinas nocivas y regulando la homeostasis en el cerebro (Abbott et 

al., 2010). 

Algunas de las principales propiedades que definen el paso de una molécula 

a través de la Barrera Hematoencefálica hacia el SNC son: 

• Lipofilicidad (LogP): Es la capacidad de un compuesto para disolverse en 

grasa o aceite. 

• Área de superficie polar (TPSA del inglés Topological Polar Surface Area): 

Suma de la superficie de todos los átomos polares en una molécula. 

• Peso Molecular (MolWt de Mol Weight en inglés): suma de todas las masas 

atómicas de los átomos de una molécula. 

 

Estas propiedades químicas son críticas para el diseño de fármacos eficaces 

en el SNC, ya que se ha demostrado que la lipofilicidad y la superficie polar 

son clave a la hora de definir la permeabilidad cerebral (Pajouhesh & Lenz, 
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2005). De hecho, es debido a esta permeabilidad selectiva que la barrera 

actúa como un “cuello de botella”, provocando que muchos fármacos no 

resulten eficaces a la hora de tratar enfermedades del SNC (Pardridge, 2005) 

Es debido a esta estructura por la que algunos fármacos no resultan eficaces 

a la hora de tratar enfermedades que afectan el sistema nervioso central. 

Enfermedades del SNC: 

En la actualidad existe un gran número de personas que padecen o han 

padecido, enfermedades que afectan el sistema nervioso central, las cuales en su 

mayoría aún no poseen ningún tratamiento efectivo (Gribkoff & Kaczmarek, 2017). 

Algunas de las cuales son: 

• Alzheimer, corresponde al 60%-70% de los casos de demencia en el 

mundo(Organización Mundial de la Salud, 2025).  

• Accidente Cerebrovascular (ACV), en 2021 fue una de las principales causas 

de muerte globalmente y lo sigue siendo(Organización Mundial de la Salud, 

2024). 

• Parkinson. Según la OMS (Organización Mundial de la Salud, 2023) en 2019 

más de  8,5 millones de personas padecían esta enfermedad. 

 

Metodologías basadas en Machine Learning. 

Machine Learning: 

(Mitchell, 1997) define el aprendizaje automático como como un proceso en 

el que un programa mejora su desempeño (D) en una tarea (T) a través de la 

experiencia (E). En el contexto actual podemos seguir viendo su definición ya que 

los datos pueden ser la experiencia, la tarea el reconocimiento de patrones y el 

desempeño son las métricas de desempeño como la precisión y la exactitud.  

En términos más actuales, el machine learning es una rama de la Inteligencia 

Artificial la cual se centra en analizar datos y usar algoritmos sin recibir instrucciones 

explicitas, con el fin de aprender de los datos consiguiendo predecir valores y 

reconocer patrones no reconocibles a simple vista. Estos valores a predecir pueden 

ser continuos o discretos dependiendo del algoritmo. 

Existen 2 principales tipos de algoritmos de machine learning: 

Aprendizaje supervisado. 
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Este grupo de algoritmos se centra en analizar datos previamente 

etiquetados para entender la relación entre los datos y su etiqueta con el fin de 

predecir la etiqueta de datos no vistos. 

Aprendizaje no supervisado. 

Grupo de algoritmos centrado en encontrar patrones y relaciones dentro de 

los datos entregados. 

Con el fin de optimizar el análisis, los datos son estructurados matricialmente 

en donde cada fila es una observación/registro y las columnas corresponden a sus 

atributos. Técnicamente, a las columnas se les denomina características o atributos, 

y la variable dependiente o a predecir recibe el nombre de etiqueta o clase objetivo. 

La principal herramienta usada para medir el desempeño de los modelos 

clasificación es la matriz de confusión, de donde nacen múltiples métricas 

importantes. 

Matriz de confusión: 

Matriz que muestra la cantidad de aciertos y desaciertos de un modelo 

predictivo de clasificación, en donde un eje demuestra los valores reales y el otro 

los valores predichos. Separando en 4 clases para un problema de clasificación 

binaria: 

• Verdaderos positivos (VP): representa la cantidad de predicciones acertadas 

para la clase positiva. 

• Falsos positivos (FP): representa la cantidad de todos los casos negativos 

identificados como positivos. 

• Falsos negativos (FN): representa la cantidad de todos los casos positivos 

que fueron identificados como negativos. 

• Verdaderos negativos (VN): representa la cantidad de predicciones acertadas 

para la clase negativa. 
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De esta matriz nacen diferentes métricas importantes. 

Métricas de desempeño. 

Exactitud: Tasa de predicciones acertadas del modelo. Se mide de la 

siguiente manera. 

 

                   

𝐸𝑥𝑎𝑐𝑡𝑖𝑡𝑢𝑑 =
𝑉𝑃 + 𝑉𝑁

𝑉𝑃 + 𝑉𝑁 + 𝐹𝑃 + 𝐹𝑁
(1) 

                                    

 

En casos de desbalanceo de clases (las clases objetivo tienen cantidades de 

registros muy diferentes) esta medida es muy mala. Por ejemplo: en un set de datos 

de 100 registros en donde la clase A representa 90 de ellos, aun cuando el modelo 

solo clasifique como A, la precisión será de 90%. 

Precisión: Tasa de acierto que tiene el modelo al predecir la clase positiva. 

Se mide de la siguiente manera:  

 

Figura 1. Matriz de confusión. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑉𝑃

𝑉𝑃 + 𝐹𝑃
(2) 

 

Esta métrica es importante cuando el coste de los Falsos Positivos es alto y 

queremos optimizar los modelos para evitar estos casos. 

Sensibilidad o Recall: Mide la capacidad del modelo de detectar los 

realmente positivos. 

 

𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑 =  
𝑉𝑃

𝑉𝑃 + 𝐹𝑁
(3) 

 

Métrica importante cuando se quiere que no pase desapercibido ningún caso 

positivo. 

 

Especificidad: Mide la capacidad del modelo de detectar los registros 

realmente falsos (también se le conoce como Sensibilidad/Recall para la clase 

negativa). 

 

𝐸𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑑𝑎𝑑 =  
𝑉𝑁

𝑉𝑁 + 𝐹𝑃
(4) 

 

Como contraparte de la métrica anterior, esta es importante si no se desea 

que los casos negativos pasen desapercibidos. 

   

F1-score: Esta métrica combina ambas Precisión y sensibilidad. Es la media 

armónica entre estas dos medidas.  

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑
(5) 
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Al combinar ambas medidas, esto lo hace más robusto que la Exactitud ante 

set de datos desbalanceados.  

 

Área bajo la curva ROC: Mide la capacidad del modelo para distinguir 

(discriminar) entre clases. Se calcula graficando la Sensibilidad frente a la Tasa de 

Falsos Positivos a través de distintos umbrales de decisión. 

 

Algoritmos 

K-Nearests Neighbors (KNN)(Cover & Hart, 1967):  

Algoritmo de aprendizaje supervisado que asume que los puntos cercanos 

son parecidos. De esta manera asigna a un nuevo punto la misma clase de los 

puntos más cercanos mediante una votación en el caso de clasificación y un 

promedio en el caso de regresión.  

 

 

 

 

 

 

 

 

 

Para este algoritmo el hiperparámetro más importante es k (el número de 

vecinos) ya que este valor gobierna la clasificación de nuevos registros. Debido a 

esto encontrar el valor de k correcto es imprescindible: un valor de k alto puede 

significar robustez ante el ruido en el set de datos, pero generalizar en exceso 

causando subajuste, por otro lado, un valor bajo causa alta sensibilidad ante el ruido, 

causando sobreajuste. 

Para encontrar los puntos más cercanos comúnmente se utiliza la distancia 

Euclidiana.  

 

Figura 2. Ejemplo clasificación KNN. 
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𝑑(𝑥, 𝑦)  =  √∑(𝑦
𝑖

− 𝑥𝑖)
2

𝑛

𝑖=1

(6) 

 

En caso de empate en la votación el algoritmo asigna la clase del nuevo punto 

según cual sea la clase moda dentro de todo el set de datos, en caso de que las 

clases tengan el mismo numero de instancias se asigna el primer valor de moda que 

encuentra. 

Para resolver ese problema de empates además de otros se creó una versión 

mejorada de KNN. 

 

Weighted KNN(Dudani, 1976):  

Versión de KNN que asigna pesos a los vecinos más cercanos, de manera 

que un vecino que se encuentre mas cerca del punto a predecir tenga mas fuerza 

que un punto que se encuentre mas lejos. El valor del peso es el inverso de la 

distancia. 

 

𝑤𝑖 =  
1

𝑑(𝑥𝑞, 𝑥𝑖)
(7) 

 

Random Forest(Breiman, 2001):  

Algoritmo de aprendizaje supervisado que entrena un conjunto de árboles de 

decisión diferentes para realizar una predicción (o Bagging). En donde cada árbol 

predice el mismo registro y se hace una votación, en el caso de ser clasificación, 

para definir el valor a predecir o se calcula un promedio en el caso de regresión. 

La manera en que se generan estos árboles de decisión es lo mas importante 

de los algoritmos. Cada árbol es independiente y cada uno de ellos esta creado en 

base a vectores generados igualitariamente distribuidos. Estos vectores definen que 

cantidad de filas muestrean del set de datos original y que columnas o 

características a elegir, logrando que cada árbol sea independiente uno del otro, 

pero creados con las mismas reglas. 
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Máquina de vectores de soporte (SVM de su nombre en inglés Support Vector 

Machine)(Cortes et al., 1995): 

Es un algoritmo de aprendizaje supervisado que busca el plano que mejor 

separa las clases objetivo. Esto lo logra buscando el hiperplano que maximiza la 

distancia entre las 2 clases. 

Esto se puede observar en el diagrama de (Yang et al., 2019). 

 

Figura 3. Diagrama explicativo de SVM. 

El hiperplano que separa ambas clases se define como:  

 

𝑓(𝑥) = (𝑤 ⋅ 𝑥 + 𝑏) (8) 

 

La fórmula principal que usa SVM es la del margen suave, que permite que 

los puntos puedan equivocarse, o no estar bien separados, pero le agrega un costo 

a eso. Esto debido a que en la práctica no todos los puntos se pueden separar 

perfectamente. 
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min
𝑤,𝑏,ξ

(
1

2
||𝑤||

2
+ 𝐶 ∑ ξ

𝑖

𝑛

𝑖=1

) (9) 

 

En donde: 

• w es el vector de pesos, perpendicular al plano separador. 

• ||𝑤||
2
es la norma Euclidiana al cuadrado del vector de pesos 

• 𝐶 es el hiperparámetro de regulación o costo, un valor alto penaliza 

fuertemente los errores de clasificación, lo que lleva a un margen estrecho, 

un valor pequeño permite mas errores a cambio de un margen más ancho. 

• ξ𝑖 es la variable de holgura. Mide cuanto le falta a un punto i para estar en el 

lado correcto del margen. 

De esta manera: 

• 
1

2
||𝑤||

2
 busca maximizar la separación de ambas clases. O en otras 

apalabras maximizar el margen. 

• 𝐶 ∑ ξ𝑖
𝑛
𝑖=1  es la sumatoria de errores de clasificación, busca minimizar el error 

de clasificación. 

De este modo el algoritmo busca el punto óptimo en donde la suma de 

ambos, la separación de clases y la sumatoria de errores, sea mínima. 

 

Gaussian Naive Bayes: 

Algoritmo de aprendizaje supervisado con bases estadísticas. Este asume 

que todas las columnas del set de datos son completamente independientes entre 

si, de ahí viene el término “Naive”. En específico esta versión del algoritmo asume 

que las columnas siguen una distribución (o Gaussiana). Esto lo hace un algoritmo 

muy rápido y barato computacionalmente hablando. 

Como lo dice su nombre basa en el teorema de Bayes, el cual explica la 

probabilidad de que ocurra un evento en base a otro. 

 

𝑃(𝐴 𝐵) =  
𝑃 (𝐵 𝐴) ∗ 𝑃(𝐴)⁄

𝑃(𝐵)
⁄ (10) 
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Este algoritmo define que clase predecir dependiendo de cual de las clases 

tiene más probabilidades de ocurrir. Esto lo logra utilizando la Función de Densidad 

de Probabilidad Gaussiana. 

 

𝑃(𝑥𝑖|𝑦) =
1

σ√2π
𝑒

−
(𝑥−μ)2

2σ2 (11) 

 

Luego de obtener las probabilidades de un registro nuevo, estas son 

multiplicadas y el resultado de ese producto es la probabilidad que se usa para la 

decisión de clase final. 

Al momento de entrenar este algoritmo predictivo, el modelo lo único que 

hace es guardar la varianza y la media para cada columna, separándolo por clase. 

 

 

Selección de características 

Existen 3 tipos de algoritmos de selección de características: 

• Filtro: Algoritmos que principalmente usan métodos estadísticos en los 

datos para realizar la selección, entregando una puntuación a cada 

característica y luego seleccionando k mejores características. Solo 

revisan la interacción entre una variable y la clase objetivo, no la 

relación entre variables y la clase objetivo. 

Son muy rápidos y baratos computacionalmente 

• Envoltura: Entrenan un modelo predictivo repetidas veces obteniendo 

una métrica que optimizar cada vez. Este tipo de selección de 

características trata el problema como una búsqueda, ya que iteran 

múltiples veces hasta encontrar la combinación de características que 

maximice una métrica de desempeño previamente definida. 

Debido a que entrenan un modelo predictivo en cada iteración estos 

algoritmos se vuelven muy costosos computacionalmente. 

• Integrados o embebidos: Se refiere a mecanismos internos que tienen 

ciertos modelos predictivos al momento de entrenarse, los cuales los 

ayudan a decidir cuáles son las características más importantes. 
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Para lograr un mejor rendimiento de los modelos se usaron 2 algoritmos de 

selección de características de diferentes tipos. 

Información mutua (Mutual Information):  

Algoritmo de selección de características del tipo filtro, basado en la teoría 

de la información y la Entropía. Este busca la relación entre una columna y la clase 

objetivo calculando cuanta incertidumbre de la clase objetivo se reduce al conocer 

la columna analizada. Logrando atrapar relaciones de diferentes tipos, no solo 

lineales como lo hace la correlación de Pearson. 

La entropía, la incertidumbre base, es definida como: 

 

𝐻(𝑌) = − ∑ 𝑝(𝑦)𝑦 log
2
(𝑝(𝑦)) (12)

  

Pero lo información mutua se calcula exactamente con la Divergencia de 

Kullback-Leibler entre la distribución conjunta de los datos y el producto de sus 

distribuciones marginales. 

 

𝐼(𝑋; 𝑌) = ∑ 𝑝(𝑥, 𝑦)

𝑥,𝑦

log
2

(
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
) (13) 

 

En esta ecuación: 

𝑝(𝑥, 𝑦) representa la co-ocurrencia entre las 2 variables o distribución real. 

𝑝(𝑥)𝑝(𝑦) representa la distribución teórica si las 2 variables fueran 

independientes. 

Por lo tanto, la información mutua cuantifica cuanta información se gana de 

la variable objetivo al rechazar la hipótesis de que las variables son 

estadísticamente independientes. De este modo, un valor alto indica una alta 

dependencia, ya sea lineal o no lineal, entre la característica analizada y la variable 

objetivo. 

Recursive Feature Elimination with cross-validation (RFEcv) 

RFEcv, o Eliminación recursiva de características con validación cruzada en 

español, es un algoritmo de selección de características del tipo de envoltura. Este 

es una variación del RFE normal, que consiste en entrenar un modelo y prueba su 
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desempeño, luego elimina un cierto número de características y entrena otro 

modelo. Así hasta encontrar la combinación de características que maximiza cierta 

métrica de desempeño. La diferencia principal con RFE normal es que en ese se 

define una cantidad de características a las que llegar. 

Para seleccionar que características eliminar depende de que algoritmo se 

usó para el entrenamiento.  

Este proceso de entrenar un nuevo modelo en cada iteración lo hace muy 

costoso computacionalmente por lo que comúnmente se usa luego de métodos de 

selección de atributos de tipo filtro. 

 

Balanceo de clases 

Desbalance de clases: 

Este término hace referencia a una diferencia significativa en la cantidad de 

registros para cada una de las clases objetivo.  

El problema del desbalance de clases es que puede causar sesgo dentro de 

los modelos predictivos, de manera que este puede aprender mucho de una de las 

clases, pero ignorar la minoritaria.  

En base a este problema se desarrollaron diferentes técnicas para 

contrarrestarlo. 

Balanceo de clases: 

El balanceo de clases comprende un grupo de técnicas orientadas a mitigar 

la diferencia en la cantidad de registros de las clases. Esto lo pueden lograr ya sea, 

eliminando registros de la clase mayoritaria (under-sampling) o agregando registros 

a la clase minoritaria (over-sampling).En esta tesis se usará SMOTE, una de las 

estrategias de sobremuestreo mas usadas en la literatura. 

 

SMOTE: Synthetic Minority Over-sampling Technique (Chawla et al., 2002): 

Esta técnica de sobremuestreo crea registros sintéticos entre una muestra de 

la clase minoritaria y un vecino cercano de esa muestra. De manera que cada 

registro nuevo es calculado como: 

 

𝑍 =  𝑃 +  𝜆(𝑄 −  𝑃) (14) 
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En donde:  

• 𝑍 es el nuevo registro sintético. 

• 𝑃 es un registro de la clase minoritaria. 

• 𝑄 es un vecino cercano de P.  

• 𝜆 es un numero al azar entre el 0 y el 1, incluyéndolos, siguiendo una 

distribución normal. 

Estado del arte  

Enfoques clásicos y modelos de referencia: 

Historicamente la predicción de la permeabilidad de la Barrera 

Hematoencefálica (BBB) fue abordada mediante modelos lineales y bayesianos. 

Autores como (Martins et al., 2012) establecieron líneas bases usando modelos 

como Maquinas de Vectores de Soporte y Random forest bajo un enfoque 

bayesiano, logrando precisiones cercanas al 95%. Además en un trabajo mas 

reciente (V. Kumar et al., 2024) usó métodos más antiguos como lo es el Análisis 

Discriminante Lineal (LDA), demostrando que métodos más simples aún pueden ser 

competitivos. Sin embargo, estos trabajos a menudo carecían de generalización 

debido a que usaban set de datos pequeños y no estandarizados. 

 

Cajas negras, Deep Learning y Ensambles: 

Recientemente la literatura a comenzado a preferir modelos de alta 

complejidad (“Cajas Negras”) en un intento de capturar relaciones no lineales en las 

moléculas. (Shaker et al., 2021) creó un modelo usando el algoritmo Light Gradient 

Boosting Machine (LGBM) junto con descriptores generados por el software Dragon, 

sacrificando interpretabilidad por potencia, al que llamaron LightBBB. Por otro lado, 

(Tang et al., 2022) propusieron Deep-B un modelo que combina procesamiento de 

lenguaje natural y visión por computadora en una visión de Deep Learning compleja. 

Por su lado, (R. Kumar et al., 2022) presentaron DeepPred-BBB, el cual usa redes 

neuronales convolucionales(CNN). Sin embargo, aunque estos modelos lograron 

buenas métricas de desempeño, autores recientes critican su falta de 

interpretabilidad, debido a su naturaleza “Caja Negra”, lo que impide entender las 

estructuras químicas que permiten la permeabilidad en una molécula. 
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Estrategias para el balance de datos: 

Un desafío importante es el desbalance de clases que actualmente existe, ya 

que los data sets poseen mayor cantidad de moléculas permeables (BBB+) que no 

permeables (BBB-).(Shi et al., 2021) abordaron explícitamente este problema 

probando múltiples estrategias de sobremuestreo, incluyendo SMOTE, ADASYN y 

Upsampling. Su estudio concluyó que la combinación de Upsampling con XGBoost 

superaba a otras técnicas, alcanzando una exactitud del 96% en un set de validación 

externo. Sin embargo, Shi et al. entrenaron sus modelos con un data set más 

pequeño y antiguo (aprox. 2354 moléculas), lo cual es significativamente menor al 

estándar actual del data set B3DB (7807 moléculas), la cual se utiliza en esta tesis. 

Además, el uso agresivo de técnicas sintéticas de sobremuestreo como SMOTE 

puede causar sobreajuste en el modelo. 

 

Interpretabilidad y nuevos descriptores: 

Como respuesta a los modelos de Deep Learning o “Caja Negra”, (Jia & 

Sosso, 2024) buscaron maximizar la interpretabilidad de sus modelos, usando el 

dataset B3DB. En lugar de usar miles de descriptores complejos, usaron los 

“cliques”, fragmentos moleculares funcionales, junto con modelos Naive Bayes y 

Random Forest . Su trabajo demostró que es posible conseguir igualar el 

rendimiento de modelos más complejos como DeepPred-BBB o LightBBB sin 

sacrificar interptretabilidad. Aunque con este trabajo lograron identificar algunos 

grupos funcionales clave, su modelo Naive Bayes es un clasificador más débil en 

términos de potencia predictiva pura en comparación con los ensambles más 

avanzados. 

 

La brecha existente: 

A pesar de los avances previamente mencionados, existe una brecha notable 

en la literatura. Por un lado, a pesar de su buen desempeño, los modelos de Shi et 

al fueron entrenados en una cantidad baja de registros(aprox. 2354 moléculas) en 

comparación a las de B3DB (aprox. 7800 moléculas) lo que hace que no tengan una 

buena capacidad de generalización, además obtuvieron una diferencia de 

desempeño considerable en el set de testeo externo lo que puede ser causa de un 

sobreajuste debido a la generación sintética de registros que utilizaron antes de su 

selección de características. Por otro lado, los modelos de (Jia & Sosso, 2024) son 

un poco débiles en términos de desempeño e ignoraron completamente el factor 3D 

y la conectividad global de las moléculas. 
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Es por eso por lo que esta tesis propone el uso de los descriptores de RDKit 

junto con fingerprints de Morgan. Además, se propone el uso de diferentes técnicas 

de selección de características con el posterior aplicacíon de SMOTE para 

balancear clases. 

Metodología. 

Recolección de datos. 

Para este estudio se utilizó el conjunto de datos público llamado ‘B3DB’. Este 

recurso ha sido utilizado anteriormente en trabajos similares, como el de Jia & 

Sosso, quienes desarrollaron diferentes modelos para predecir la permeabilidad con 

el objetivo de conseguir resultados interpretables (Jia & Sosso, 2024). 

Este set de datos cuenta con 7807 moléculas diferentes, de las cuales 2851 

no atraviesan la barrera (BBB-) y 4956 si lo logran (BBB+). Se puede ver una clara 

diferencia entre la cantidad de registros entre los 2 tipos de moléculas, esto es 

conocido como desbalance de clases. Esto causa sesgo a la hora de la predicción 

de los modelos. 

 

Caracterización de los datos y preprocesamiento. 

La caracterización de moléculas del set de datos se refiere al proceso de 

generar nuevas columnas(también conoció como características) para agregar 

información relevante en la que los modelos predictivos se puedan apoyar para 

realizar sus funciones. 

Para la generación de columnas para el modelo se eligieron 2 grupos de 

descriptores moleculares. 

1) Set completo de descriptores de RDKit: Esta es una librería de Python 

enfocada en el análisis químico. La cual ofrece un total de 217 descriptores 

numéricos en la versión 2025.3.5.  

Se escogió este set de descriptores ya que abarca un rango amplio de   

características moleculares 2d. Contiene propiedades fisicoquímicas, conteo 

de átomos y enlaces, índices topológicos, entre otros.  

2) Fingerprint de Morgan: Se genero un fingerprint de Morgan de 1024 bits y 2 

de radio (Rogers & Hahn, 2010). Esto entrega 1024 descriptores binarios, en 
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donde cada uno de estos representa la presencia o ausencia de 

subestructuras moleculares específicas.  Este conjunto igualmente fue 

calculado usando la librería RDKit. 

Para el preprocesamiento se usó diferentes técnicas. 

1) Chequeo de columnas que contengan solo 0’s. Esto se hizo debido a que 

por la naturaleza de los descriptores es muy probable que algunas columnas no 

contengan registros diferentes de 0 al analizar propiedades muy específicas. Se 

elimino 5 columnas pertenecientes a los descriptores de RDKit. 

2) Chequeo de valores nulos. Solo se encontraron 5 registros/filas que 

contenían valores nulos. Los cuales fueron eliminados. 

3) Limpieza varianza 0. Se elimino todas las columnas que tuvieran varianza 

igual a 0 ya que estas no aportan ninguna información valiosa a los modelos 

predictivos. 

4) Umbral de coeficiente de variación. Luego de eliminar todas las columnas 

con varianza 0 también se eliminó las que poseían un Coeficiente de variación 

menor o igual a 15%. Esto debido a que un coeficiente de variación bajo significa 

que los datos presentan poca dispersión relativa lo que significa que estas 

características no sean muy discriminativas a la hora de diferenciar la clase objetivo 

(BBB+/BBB-). A continuación, se presenta la formula del coeficiente de variación: 

 

𝐶𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒 𝑑𝑒 𝑣𝑎𝑟𝑖𝑎𝑐𝑖ó𝑛 =
𝜎

𝜇
=  

𝐷𝑒𝑠𝑣𝑖𝑎𝑐𝑖𝑜𝑛 𝑒𝑠𝑡𝑎𝑛𝑑𝑎𝑟

𝑀𝑒𝑑𝑖𝑎
(15) 

 

5)Análisis de correlación. Se utilizó un criterio de Correlación de Pearson, 

eliminando las columnas que tuvieran un coeficiente mayor a 0.98 con otra. 

Eligiendo cuál de las 2 columnas a eliminar según cual tenía un menor coeficiente 

de correlación con la variable objetivo. Se realizó este filtro ya que un alto coeficiente 

de correlación significa que 2 características pueden ser explicadas entre sí, por lo 

que 1 de las 2 realmente no aporta nueva información al modelo. 

 

Luego de la generación de descriptores y su posterior preprocesamiento se 

terminó con un Dataset de 7800 filas y 1209 columnas. 
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Selección de características. 

Para comenzar el proceso de selección de características se realizó una 

división de entrenamiento y testeo con 80% de los datos para entrenamiento y el 

20% sobrante para testeo. 

También, previo a la selección de atributos se crea una copia de respaldo del 

conjunto de datos para una futura comparación del resultado de los modelos entre 

un conjunto sin ningún cambio y el que si paso por el proceso de selección de 

atributos. 

Con el fin de mejorar el rendimiento de los modelos se aplicaron 2 algoritmos 

de selección de características. Esto de manera continua entregando al segundo 

algoritmo el set de datos con las características seleccionas por el primero. 

1) Mutual Information o información mutua en español. Algoritmo que mide la 

dependencia entre 2 variables calculando cuanta incertidumbre de la variable 

objetivo se pierde si se conoce cierta característica. Esto nos entrega un ranking de 

valores en donde se mantuvo el 75% de las columnas con puntuación más alta. 

2)RFEcv. Recursive feature elimination with cross validation o en español, 

eliminación recursiva de características con validación cruzada (Guyon et al., 2002). 

Algoritmo que prueba un modelo con K características y con cada iteración elimina 

un cierto porcentaje de estas. A diferencia del RFE normal en el que se define un 

numero de columnas a mantener, este lo hace automáticamente seleccionando la 

mejor cantidad de columnas, lo que hace que sea mucho más costoso 

computacionalmente.  

En este caso el algoritmo puntuó los modelos según su f1-score ya que es 

considerada una métrica de evaluación más robusta por si sola. Se usó validación 

cruzada de 5 pliegues. 

 

Finalmente, luego del proceso de selección de características se obtuvo un 

nuevo set de datos con 897 características. 

 

Entrenamiento y optimización de hiperparámetros. 

Debido a que el set de datos esta desbalanceado en una razón de 2851 

registros para la clase negativa (BBB-) y 4956 registros para la clase positiva (BBB+) 

se decidió balancear los datos usando la técnica SMOTE, la cual crea registros 

sintéticos de la clase más pequeña para igualar la cantidad de registros por clase.  
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Este proceso de balanceo de clases se aplicará luego de la selección de 

características debido a que de lo contrario puede generar sobreajuste en los 

modelos. 

Para cumplir con la tarea de predecir la permeabilidad de las moléculas se 

entrenará diferentes modelos de machine learning supervisado, esto significa que 

se analizará un conjunto de datos previamente etiquetados para aprender de ellos 

y lograr predecir la permeabilidad de moléculas desconocidas por el modelo. 

Se eligieron 4 modelos diferentes para entrenar, cada uno de estos 

pertenecientes a diferentes paradigmas de aprendizaje para obtener una mejor 

comparación. 

Los algoritmos fueron: 

Weighted KNN(Dudani, 1976): Una versión de KNN(Cover & Hart, 1967) que 

considera la distancia de los puntos para asignarles un peso, de manera que los 

puntos más cercanos tienen más fuerza que los lejanos a la hora de asignar una 

clase. 

Random Forest(Breiman, 2001): Algoritmo que entrena varios árboles de 

decisión diferentes, para luego hacer que cada uno de estos prediga un punto y 

luego hacer una votación entre todos estos modelos para hacer la predicción 

“oficial”, lo que lo hace robusto y resistente a sobre-ajuste. 

Máquina de Vectores de Soporte (SVM de su nombre en inglés Super Vector 

Machine)(Cortes et al., 1995): Algoritmo robusto ante alta dimensionalidad que 

busca el hiperplano que mejor separe la clase objetivo. Puede usar diferentes kernel 

para aumentar la dimensión de los datos de manera de que en esa dimensión la 

clase objetivo si sea separable. 

Gaussian Naive Bayes: Predice la clase objetivo de manera rápida y 

estadísticamente, asumiendo que todas las columnas o características siguen una 

distribución normal. Elegido para otorgar comparación ante modelos más robustos. 

Cada una de las versiones de estos algoritmos fueron las de la librería scikit-

learn de Python. 

Todos estos modelos fueron entrenados en los datos de entrenamiento, que 

es el 80% de los datos originales.  

Se empleó la técnica de búsqueda por rejilla (en ingles grid search) con el 

objetivo de hallar la combinación óptima de hiperparámetros dentro del espacio de 
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búsqueda definido. Para la evaluación del desempeño de los modelos generados 

por grid-search se usó una validación cruzada de 5 pliegues. 

Aquí cada uno de los parámetros que se optimizo: 

 

 

 

Tabla 1. Hiperparámetros optimizados por algoritmo. 

Modelo Hiperparámetros 

Weighted 

KNN 

- ‘n_neighbors’: rango de 1 a 20. 

Random 

Forest 

- ‘n_estimators’: 100 a 1000 con saltos de 50.  

- ‘criterion’: gini, entropy o log_loss. 

SVM - ‘Kernel’: rbf o poly 

- ‘C’: 0.1, 1, 10, 100. 

- ‘Gamma’ (solo para el kernel ‘rbf’): 1, 0.1, 0.01, 

0.001. 

- ‘Degree’ (solo para el kernel ‘poly’): 2, 3, 4, 5. 

 

Gaussian 

Naive Bayes 

No se optimizo parámetros. 

 

 

Evaluación e interpretación de resultados. 

 

El rendimiento final de los modelos de clasificación se evaluó sobre el 20% 

de los datos (el set de testeo/prueba) utilizando las siguientes métricas: 

.  

• Exactitud: Tasa de predicciones acertadas entre todas las predicciones. 

• Precisión: Tasa de acierto cuando el modelo predice Verdadero o la clase 

positiva. 

• Sensibilidad o Recall: Mide la capacidad del modelo de detectar los positivos 

entre positivos. 

• Especificidad: Mide la capacidad del modelo de detectar los falsos entre los 

falsos 
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• F1-score: Medida que combina Precisión y sensibilidad. Es la media 

armónica entre estas dos medidas. Es buena para datos desbalanceados. 

• Área bajo la curva ROC: Mide la capacidad del modelo de distinguir entre 

clases. Esto a través de la Sensibilidad (o tasa de verdaderos positivos) y la 

tasa de falsos positivos. 

 

Con el fin de tener una mayor comprensión química de los resultados se 

obtendrá la importancia de características(Feature Importance) para ambos 

modelos de Random Forest. Esta importancia se deriva de la métrica de impureza 

utilizada durante el entrenamiento ( internamente se utiliza como criterio de división). 

La impureza de cada característica representa la reducción de impureza que aporta. 

Estas medidas de importancia son entregadas de manera que la suma total de ellas 

sea igual a 1. 

 

Resultados  

Creación del set de datos caracterizado 

 

Como resultado de la caracterización, preprocesamiento y selección de 

características se obtuvo un conjunto de datos con 897 columnas y 7800 filas. 

 

 

 

 

 

 

 

 

 

 

Como parte del análisis exploratorio de datos se generó 3 boxplots de 3 

principales descriptores generados por RDKit los cuales fueron: la lipofilicidad 

(MolLogP), el peso molecular (MolWT ) y la superficie polar total (TPSA). En la 

Figura 4. Columnas por etapa. 
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Figura 5 se puede ver que las características MolLogP y MolWt no presentan una 

diferencia entre la distribución de las clases (BBB-/BBB+) muy significativa. Por otro 

lado, la característica TPSA si demuestra una pequeña separación en la distribución 

de las clases como se puede apreciar en la Tabla 2. 

 

 

 

 

 

Tabla 2. Promedios de características MolWt, MolLogP y TPSA según clase. 

Promedio por clase. 
  BBB+ BBB- 
MolWt 2,877 1,454 
MolLogP 340,182 464,717 
TPSA 60,100 133,924 

. 

 

Ademas debido a la gran cantidad de columnas que se tienen se hace un 

análisis de correlación para verificar redundancia de información en el dataset. 

En la Figura 6se puede que ver que las correlaciones existentes dentro de 

los descriptores de RDKit siguen una distribucion normal, pero aun asi hay varias 

columnas dentro de este grupo que estan altamente correlacionadas. Como se ve 

en la Figura 7. 

Figura 5. Boxplots de 3 propiedades 
importantes. 

Muestra MolLogP(a), MolWt(b) y 
TPSA(c) agrupadas por clase objetivo(BBB-

/BBB+). 
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(a)                                                                                             (b)                                                                                                 

 

 

 

 

 

 

Entrenamiento y evaluación. 

 

Se entrenaron 4 modelos diferentes: KNN, SVM, Random Forest y Naive 

Bayes. Generando 2 grupos, un grupo al que solo se le aplicó SMOTE y otro que 

paso por un proceso de Selección de características antes que SMOTE. Finalizando 

con 8 modelos predictivos diferentes. Además, a cada uno de estos modelos se les 

optimizo los hiperparámetros usando la estrategia grid-search. 

Figura 6. Distribución de correlación de 
Pearson de descriptores de RDKit. 

Figura 7. Mapas de calor de la correlación de 
Pearson de columnas. 

Gráfico (a) corresponder a todas las columnas del 
conjunto de datos, el (b) solo a los descriptores de 

RDKIT. 
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Se calcularon múltiples métricas de desempeño para cada uno de los 

modelos de predicción, los resultados fueron ordenados en tablas para su 

visualización. La Tabla 3 contiene los resultados de los algoritmos que solo se les 

aplicó el algoritmo SMOTE, la Tabla 4 contiene los resultados de los algoritmos a 

los que se les aplicó SMOTE con una posterior Selección de Características. 

Se puede ver que como regla general todos los algoritmos tienen una mayor 

Sensibilidad que Especificidad. También es visible poca variación en la Exactitud de 

los modelos predictivos rondando los valores de 0.86 en promedio. 

Se ve como 2 algoritmos lograron resultados muy cercanos en ambas tablas, 

los cuales son Random Forest y SVM, estos 2 algoritmos son los mejores en base 

a las métricas. Pero finalmente el mejor es el algoritmo Random Forest sin selección 

de características debido a su alto valor en AUC logrando un 0.96. 

Por otro lado, el algoritmo que peor desempeño tuvo fue Gaussian Naive 

Bayes, que obtuvo los peores resultados en ambos grupos. Esto debido a su baja 

Especificidad de 0.72 y su baja Exactitud obteniendo 0.84 puntos en su versión con 

Selección de características. 

 

Tabla 3. Tabla con métricas de desempeño de modelos solo con SMOTE. 

Modelos solo con SMOTE 
 

Modelo Precisión  Sensibilidad Especificidad F1-score AUC Exactitud 

KNN  0,90 0,87 0,84 0,85 0,88 0,86 

RF 0,89 0,93 0,80 0,87 0,96 0,88 

SVM 0,90 0,92 0,83 0,87 x 0,88 

GNB 0,84 0,87 0,72 0,80 0,84 0,82 

 

 

Tabla 4. Tabla con métricas de desempeño de modelos con SMOTE y selección de 
características. 

Modelos con SMOTE + Selección de características 
 

Modelo Precisión  Sensibilidad Especificidad F1-score AUC Exactitud 

KNN 0,90 0,89 0,83 0,86 0,89 0,87 

RF 0,89 0,93 0,80 0,87 0,94 0,88 

SVM  0,89 0,93 0,80 0,87 X 0,88 

GNB 0,85 0,90 0,72 0,82 0,86 0,84 
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Figura 8. Gráfico de barras de métricas de desempeño modelos SMOTE. 

 Separado por métrica para cada uno de los modelos a los que solo se les aplicó SMOTE  

 

 

Figura 9. Gráfico de barras de métricas de desempeño modelos sel. Características. 

 Separado por métrica para cada uno de los modelos a los que se les aplicó SMOTE y Selección 
de características. 

 

En la Figura 10 se ve la matriz de confusión del modelo Random Forest sin 

selección de características. Es desde aquí de donde se calculan todas sus métricas 

de desempeño. Se puede ver una tasa mayor de casos BBB+ acertados que para 

la clase BBB-. 
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Con el fin de lograr entender cuáles son las características mas valiosas a la 

hora de predecir si una molécula es capaz de atravesar o no la Barrera 

Hematoencefálica se obtuvo la importancia de características de los modelos 

Random Forest que fueron entrenados. 

Tanto en el modelo con Selección de características (Figura 11) como en el 

del modelo sin ella (Figura 12) se puede ver el mismo tipo de distribución, en donde 

solo algunos descriptores tienen una alta importancia y luego esta disminuye.  

Podemos ver que algunas de las características más importantes se repiten 

en ambos modelos Random Forest. Algunas de las más importantes: TPSA, qed, 

NOcount, NHOHcount. No se puede apreciar ninguna de las características 

generadas por el fingerprint de Morgan. 

Figura 10. Matriz de confusión de modelo Random Forest sin Sel. 
características. 
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En base a los a la Figura 11 se generó un PairPlot, Figura 13, de las 5 

características más importantes, con el fin de comprender la razón de la importancia 

de estas. 

En ninguna de estas características se puede ver una diferenciación clara 

entre las 2 clases (BBB-/BBB+). 

Cabe recalcar que este gráfico se construyó usando el set de datos sin 

SMOTE, para capturar la naturaleza real de los registros. 

Figura 11. Importancia de características para modelo 
Random Forest con selección de características. 

Figura 12. Importancia de características para modelo Random 
Forest sin selección de características. 
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Figura 13. PairPlot columnas importantes.  

Se ven gráficos de dispersión y de distribución univariada de las 5 
propiedades/características que tienen más importancia en uno de los modelos 

Random Forest. 
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Como se puede ver en la Figura 14, también se obtuvo las curvas ROC para 

obtener el AUC(Area Under the Curve). Se puede apreciar que los algoritmos 

Random Forest obtuvieron la mejor puntuación con un valor de 0.96 y el peor 

resultado fue el de los algoritmos Gaussian Naive Bayes con un valor de 0.84, por 

otro lado, KNN obtuvo valores dentro de la media con 0.90 y 0.88. 

 

 

 

 

 

 

 

Figura 14. Curvas ROC. 

Característica operativa del receptor o ROC acrónimo del inglés Reciever 
Operating Characteristic. Junto con el área bajo la curva (AUC de Area 

Under the Curve) y una curva demostrativa de un AUC igual a 0.5. 
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Discusión 

En el presente estudio se implementaron 4 algoritmos de clasificación 

diferentes (KNN, SVM, Random Forest y Naive Bayes). En donde, para efectos 

comparativos se generaron 2 variantes de cada uno: con selección de 

características y otra sin ella. Este proceso de selección se implementó del modo 

que los resultados del primer algoritmo fueron entregados al segundo, con el fin de 

encontrar los mejores descriptores que facilitaran la predicción. Luego de esto, se 

le aplico la técnica de balanceo SMOTE al set de datos de entrenamiento para cada 

uno de los algoritmos. 

Como se puede ver en la Tabla 3 y la Tabla 4 los resultados obtenidos por los 

modelos predictivos presentaron limitaciones en términos de Exactitud, ya que 

ninguno de estos supero el umbral de 0.9 a diferencia del modelo de (Shi et al., 

2021) que obtuvo un 0.96 de Exactitud con su modelo de XGBoost . Aunque algunos 

de los modelos obtuvieron muy buenos resultados en otras métricas como lo es el 

modelo de Random Forest sin selección de características, que obtuvo 0.96 de 

AUC. En otras métricas algunos de los modelos obtuvieron un 0.93 en Sensibilidad 

y/ o 0.83 en lo cual se podría considerar bueno. 

En comparación a otros trabajos que usaron el mismo set de datos, estos 

resultados son un poco más altos que el de (Jia & Sosso, 2024) que tiene un 0.90 y 

0.84 de Sensibilidad y Especificidad respectivamente. Pero en términos generales 

el desempeño de los modelos no fue tan alto como lo esperado. 

Se puede ver que en norma general todos los modelos desarrollados tienen 

una mejor Sensibilidad que Especificidad. Lo que significa que son muy capaces de 

predecir correctamente la clase positiva o en este caso, las moléculas que 

consiguen atravesar la Barrera Hematoencefálica, de hecho. Esto se puede ver en 

la matriz de confusión del modelo Random Forest sin selección de características 

en donde hay una cantidad mucho menor de casos positivos(BBB+) clasificados 

erróneamente en comparación a los negativos (BBB-). 

En el análisis del PairPlot (Figura 13) se revela que, a pesar de ser las 

características con mayor importancia, ninguna de ellas demuestra una separación 

evidente entre las clases. Esto sugiere que el rendimiento no depende de 

características aisladas, sino que de la interacción combinada de dichas 

características. 
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Hablando del proceso de Selección de características, se puede ver que no 

causó una mejora en los modelos de Random Forest y SVM, esto debido a que 

ambos modelos son conocidos por ser robustos ante grandes cantidades de 

características. Por otro lado, se puede ver una mejora menor en el desempeño de 

los algoritmos KNN y Gaussian Naive Bayes, aun así, esta mejora solo es de 

alrededor de 0.2 puntos porcentuales lo que no se podría considerar un aumento 

significativo. 

Con respecto a las características mas importantes, lo primero a resaltar es 

que ninguno de los descriptores del fingerprint de Morgan se encuentran en el top 

de importancia, lo que puede significar 2 cosas: este fingerprint no aporta al modelo 

o ninguno de las columnas generadas por el mismo aporta por si sola. 

 

En términos de las características mas decisivas a la hora de definir la 

permeabilidad, como era de esperar la superficie polar total (TPSA) y la similaridad 

a fármacos orales existentes (qed) son bastante importantes. Pero también se 

puede ver otros descriptores que también obtuvieron alta importancia: como el 

calculo de polaridad especifica en PEOE_VSA1 (polaridad baja) y PEOE_VSA10 

(polaridad alta) lo que puede significar que es importante saber exactamente que 

tipo de polaridad tiene una molécula y no solo su carga total. Por otro lado, una 

característica a destacar es AtomStereoCenters que cuenta el número de átomos 

que generan estereoisometría o, en otras palabras, que este descriptor se encuentre 

dentro del top en importancia significa que al modelo le importa la forma 3D de la 

molécula. En base a estos descubrimientos se puede llegar a la conclusión que el 

conocer estas características sobre una molécula puede orientar la búsqueda de 

fármacos permeables. 

 

Conclusiones 

En conclusión, se consiguió desarrollar un modelo capaz de predecir 

características moleculares, específicamente la permeabilidad de los fármacos o 

habilidad de traspasar la Barrera Hematoencefálica.  

Los resultados evidencian que el modelo de Random Forest sin selección de 

características fue superior que los demás modelos en múltiples métricas de 

desempeño, alcanzando un 0.96 de AUC y un 0.93 de Sensibilidad. Lo que indica 
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que tiene una muy alta capacidad de discernir entre las 2 clases (BBB+ y BBB-). Es 

por eso que se determinó a este modelo como el más idóneo y por esa misma razón 

este puede ser usado como punto de partida para futuras mejoras. 

Como trabajo futuro, se sugiere explorar que el desempeño de los modelos 

se puede mejorar utilizando otros fingerprints como lo puede ser el MACCS (Durant 

et al., 2002) ya sea reemplazando o agregándolos a los que se usaron en esta tesis, 

es interesante agregarlo ya que los mejores algoritmos fueron los más robustos ante 

gran dimensionalidad. También se debe probar otros métodos de selección de 

características diferentes a Información Mutua y RFEcv ya que estos en conjunto 

no lograron una mejora significativa en los resultados. Por otro lado, se pueden 

implementar otros algoritmos predictivos para expandir el área de búsqueda y 

encontrar la mejor combinación de algoritmos predictivos y selección de 

características. Además, todavía queda la posibilidad de expandir el set de datos 

incluyendo una mayor cantidad de moléculas etiquetadas, lo que puede traer 

consigo un mayor desempeño y una mejor generalización. 
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