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Resumen

El propdsito de esta tesis fue implementar modelos clasificadores de machine
learning que puedan predecir eficazmente la capacidad molecular de atravesar la
Barrera Hematoencefalica. Con el fin de acelerar el proceso de sintesis de nuevos

farmacos para tratar enfermedades del Sistema Nervioso Central.

Esto se hizo a través del entrenamiento de 4 modelos clasificadores
diferentes: KNN, SVM, Random Forest y Gaussian Naive Bayes. Para esto se usé
la base de datos publica B3DB la cual contiene moléculas previamente etiquetadas,
luego se realizd un proceso de seleccidn de caracteristicas aplicando Informacién
Mutua y RFEcv de manera continua. Finalmente, los parametros de los modelos
fueron optimizados a través de la técnica grid search. Se crearon versiones de los

modelos sin seleccidn de caracteristicas con fines comparativos.

Luego de este proceso se obtuvo como principal resultado un modelo
Random Forest que logré un AUC de 0.96 y una Especificidad de 0.93. Ademas, se
obtuvieron las importancias de caracteristicas para el modelo anteriormente
mencionado, en donde algunas de las principales variables fueron: TPSA, ged y
NOCount.

A partir de estos resultados se puede concluir que los modelos si pueden
predecir eficazmente la permeabilidad de las moléculas. Ademas, algunos de los
modelos generados superan levemente modelos generados por otros autores

usando los mismos datos.

Palabras clave: Machine learning, Permeabilidad, Random Forest, RFEcv.
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Abstract

The purpose of this thesis was to implement machine learning classification
models that can effectively predict the molecular ability to cross the blood-brain
barrier. The aim was to accelerate the process of synthesizing new drugs to treat

diseases of the central nervous system.

This was done by training four different classification models: KNN, SVM,
Random Forest, and Gaussian Naive Bayes. For this, the public B3DB database was
used, which contains previously labeled molecules. Then, a feature selection
process was performed by continuously applying Mutual Information and RFEcv.
Finally, the model parameters were optimized using the grid search technique.
Versions of the models without feature selection were created for comparison

purposes.

After this process, the main result was a Random Forest model that achieved
an AUC of 0.96 and a specificity of 0.93. In addition, the feature importance for the
model was obtained, where some of the main variables were: TPSA, ged, and
NOCount.

Based on these results, it can be concluded that the models can effectively
predict the permeability of molecules. In addition, some of the models generated

slightly outperform models generated by other authors using the same data.

Keywords: Machine learning, Permeability, Random Forest, RFEcv
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Introduccion

Hoy en dia las enfermedades del sistema nervioso central son una de las
patologias que afecta a mas personas en el mundo, en donde para la mayoria aun

no hay un tratamiento completamente efectivo.

Las enfermedades neurodegenerativas, como el Alzheimer o el Parkinson,
representan uno de los desafios médicos mas complejos de nuestro tiempo. Estas
patologias no solo no han podido ser tratadas al 100% sino que su naturaleza
progresiva y devastadora ha causado un temor generalizado en la sociedad por

mucho tiempo.

De hecho, solo un 8% de las prescripciones para tratar enfermedades del
Sistema Nervioso Central (SNC) son efectivos. Lo que demuestra la dificultad

existente en poder crear farmacos que consigan tratar estas patologias.

Esto se debe principalmente a la Barrera Hematoencefalica. Esta es una
estructura totalmente selectiva que cumple la funcién de proteger el sistema
nervioso central, esto lo hace regulando el paso de sustancias desde la sangre al
tejido cerebral, previniendo el paso de toxinas o patéogenos dafinos, y de
desregulaciones hormonales. De esta manera la Barrera Hematoencefalica se
transforma en un problema para el desarrollo de farmacos enfocados en el SNC ya

gue no permite estos consigan llegar al cerebro y lograr su efecto.

En los ultimos afios se han realizado muchos intentos para poder darle fin a
este permanente problema y cada vez la sociedad se ha acercado mas a encontrar
una cura para estas enfermedades, pero como se mencioné anteriormente aun es

un desafio por superar.

Este problema no es solo un desafio médico, sino también econémico y
social. El costo de cuidado de pacientes con Alzheimer/Parkinson es inmenso, y el
fracaso en encontrar farmacos efectivos que penetren la Barrera Hematoencefalica

representa millones de pérdidas en investigacion y desarrollo.

Actualmente existen muchos métodos que intentan predecir la permeabilidad
de las moléculas (habilidad para traspasar la Barrera Hematoencefalica), ya sea
métodos probados en animales o in vitro, muchos de los cuales requieren muchos
recursos, tiempo o personas, por lo que son muy costosos. Por ello el desarrollo de
farmacos efectivos para tratar enfermedades del sistema nervioso central se ve

retrasado.



Es aqui en donde entran los métodos computacionales, en especifico el
machine learning. Esta herramienta es capaz de predecir la efectividad de los
farmacos en cuestion de segundos, acelerando asi el desarrollo de medicamentos
que logren atravesar la barrera. Esto permite a los investigadores orientar sus

esfuerzos en compuestos mucho mas prometedores.

En esta tesis se abordara el desafio de la permeabilidad de las moléculas
usando técnicas de Machine learning. Con el objetivo de clasificar las moléculas
respecto a su capacidad de atravesar la Barrera Hematoencefalica, a la que en
adelante nos referiremos como BBB (por sus singles en inglés Blood Brain Barrier).
En consecuencia, la cualidad de una molécula para atravesar dicha barrera sera

definida como BBB+, mientras que se utilizara BBB- para las que no lo consigan.

Objetivos

Objetivo General:

Desarrollar y evaluar modelos de machine learning para predecir
permeabilidad de moléculas a partir de su caracterizacién quimica, con el fin de
apoyar procesos de disefio y sintesis de farmacos efectivos contra enfermedades

del Sistema Nervioso Central.

Objetivos Especificos.

1. Recolectar, curary organizar datos moleculares a partir de bases de datos
publicas.

2. Generar descriptores moleculares estructurales y fisicoquimicos
utilizando herramientas computacionales.

3. Desarrollar modelos predictivos utilizando algoritmos KNN, SVM,
Random Forest y Naive Bayes ajustando sus hiperparametros para
optimizar desempefio.

4. Evaluar el desempeio de los modelos mediante métricas estadisticas y

validacion cruzada.



Revision bibliografica

Marco teodrico

Contexto biolégico

Para iniciar se dara un breve contexto biolégico respecto al tema de la

investigacion.

Sistema nervioso central:

El sistema nervioso central o SNC esta compuesto por el cerebro y la médula
espinal. Este se encarga de recibir informacién sensorial, procesar dicha
informacion y generar una respuesta motora (Squire, 2013). Es asi como luego de
recibir una sefial externa el cerebro envia una sefal eléctrica a través de la médula

espinal hacia los musculos y/o glandulas para generar una respuesta.

Debido a lo anterior el SNC se vuelve un sistema vital para la homeostasis

en el cuerpo humano.
Barrera Hematoencefalica BHE o BBB del inglés Blood Brain Barrier:

La Barrera Hematoencefalica es una barrera selectivamente permeable que
regula el paso de moléculas desde el torrente sanguineo hacia el sistema nervioso
central. Su principal funcion es la proteccién del sistema nervioso central, evitando
que traspasen toxinas nocivas y regulando la homeostasis en el cerebro (Abbott et
al., 2010).

Algunas de las principales propiedades que definen el paso de una molécula

a través de la Barrera Hematoencefalica hacia el SNC son:

e Lipofilicidad (LogP): Es la capacidad de un compuesto para disolverse en
grasa o aceite.

e Area de superficie polar (TPSA del inglés Topological Polar Surface Area):
Suma de la superficie de todos los atomos polares en una molécula.

e Peso Molecular (MolWt de Mol Weight en inglés): suma de todas las masas

atomicas de los atomos de una molécula.

Estas propiedades quimicas son criticas para el disefio de farmacos eficaces
en el SNC, ya que se ha demostrado que la lipofilicidad y la superficie polar

son clave a la hora de definir la permeabilidad cerebral (Pajouhesh & Lenz,



2005). De hecho, es debido a esta permeabilidad selectiva que la barrera
actua como un “cuello de botella”, provocando que muchos farmacos no

resulten eficaces a la hora de tratar enfermedades del SNC (Pardridge, 2005)

Es debido a esta estructura por la que algunos farmacos no resultan eficaces

a la hora de tratar enfermedades que afectan el sistema nervioso central.

Enfermedades del SNC:

En la actualidad existe un gran numero de personas que padecen o han
padecido, enfermedades que afectan el sistema nervioso central, las cuales en su
mayoria aun no poseen ningun tratamiento efectivo (Gribkoff & Kaczmarek, 2017).

Algunas de las cuales son:

e Alzheimer, corresponde al 60%-70% de los casos de demencia en el
mundo(Organizacion Mundial de la Salud, 2025).

e Accidente Cerebrovascular (ACV), en 2021 fue una de las principales causas
de muerte globalmente y lo sigue siendo(Organizacion Mundial de la Salud,
2024).

e Parkinson. Segun la OMS (Organizacion Mundial de la Salud, 2023) en 2019

mas de 8,5 millones de personas padecian esta enfermedad.

Metodologias basadas en Machine Learning.

Machine Learning:

(Mitchell, 1997) define el aprendizaje automatico como como un proceso en
el que un programa mejora su desempeno (D) en una tarea (T) a través de la
experiencia (E). En el contexto actual podemos seguir viendo su definicion ya que
los datos pueden ser la experiencia, la tarea el reconocimiento de patrones vy el

desemperio son las métricas de desempefio como la precision y la exactitud.

En términos mas actuales, el machine learning es una rama de la Inteligencia
Artificial la cual se centra en analizar datos y usar algoritmos sin recibir instrucciones
explicitas, con el fin de aprender de los datos consiguiendo predecir valores y
reconocer patrones no reconocibles a simple vista. Estos valores a predecir pueden

ser continuos o discretos dependiendo del algoritmo.
Existen 2 principales tipos de algoritmos de machine learning:

Aprendizaje supervisado.



Este grupo de algoritmos se centra en analizar datos previamente
etiquetados para entender la relacion entre los datos y su etiqueta con el fin de

predecir la etiqueta de datos no vistos.
Aprendizaje no supervisado.

Grupo de algoritmos centrado en encontrar patrones y relaciones dentro de

los datos entregados.

Con el fin de optimizar el analisis, los datos son estructurados matricialmente
en donde cada fila es una observacién/registro y las columnas corresponden a sus
atributos. Técnicamente, a las columnas se les denomina caracteristicas o atributos,

y la variable dependiente o a predecir recibe el nombre de etiqueta o clase objetivo.

La principal herramienta usada para medir el desempefio de los modelos
clasificacion es la matriz de confusion, de donde nacen multiples métricas

importantes.

Matriz de confusion:

Matriz que muestra la cantidad de aciertos y desaciertos de un modelo
predictivo de clasificacion, en donde un eje demuestra los valores reales y el otro
los valores predichos. Separando en 4 clases para un problema de clasificacion

binaria:

e \Verdaderos positivos (VP): representa la cantidad de predicciones acertadas
para la clase positiva.

e Falsos positivos (FP): representa la cantidad de todos los casos negativos
identificados como positivos.

e Falsos negativos (FN): representa la cantidad de todos los casos positivos
que fueron identificados como negativos.

e Verdaderos negativos (VN): representa la cantidad de predicciones acertadas

para la clase negativa.



5 Verdaderos Falsos
g Positivos Positivos
=

et

o
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Figura 1. Matriz de confusion.

De esta matriz nacen diferentes métricas importantes.

Métricas de desempeiio.

Exactitud: Tasa de predicciones acertadas del modelo. Se mide de la

siguiente manera.

VP +VN
VP+VN+ FP +FN

Exactitud =

(D

En casos de desbalanceo de clases (las clases objetivo tienen cantidades de
registros muy diferentes) esta medida es muy mala. Por ejemplo: en un set de datos
de 100 registros en donde la clase A representa 90 de ellos, aun cuando el modelo
solo clasifique como A, la precision sera de 90%.

Precision: Tasa de acierto que tiene el modelo al predecir la clase positiva.

Se mide de la siguiente manera:



Precision = Ve 2
recision = VP T FP (2)

Esta métrica es importante cuando el coste de los Falsos Positivos es alto y

queremos optimizar los modelos para evitar estos casos.

Sensibilidad o Recall: Mide la capacidad del modelo de detectar los

realmente positivos.

VP
Sensibilidad = ———— 3)
VP + FN

Métrica importante cuando se quiere que no pase desapercibido ningun caso

positivo.

Especificidad: Mide la capacidad del modelo de detectar los registros
realmente falsos (también se le conoce como Sensibilidad/Recall para la clase

negativa).

Especificidad = w (4)
e — ————
specificida > P

Como contraparte de la métrica anterior, esta es importante si no se desea

que los casos negativos pasen desapercibidos.

F1-score: Esta métrica combina ambas Precision y sensibilidad. Es la media

armonica entre estas dos medidas.

Precision * Sensibilidad
F1 — score = 2 (5)
Precision + Sensibilidad




Al combinar ambas medidas, esto lo hace mas robusto que la Exactitud ante

set de datos desbalanceados.

Area bajo la curva ROC: Mide la capacidad del modelo para distinguir
(discriminar) entre clases. Se calcula graficando la Sensibilidad frente a la Tasa de

Falsos Positivos a través de distintos umbrales de decision.

Algoritmos

K-Nearests Neighbors (KNN)(Cover & Hart, 1967):

Algoritmo de aprendizaje supervisado que asume que los puntos cercanos
son parecidos. De esta manera asigna a un nuevo punto la misma clase de los
puntos mas cercanos mediante una votacién en el caso de clasificacion y un

promedio en el caso de regresion.

Figura 2. Ejemplo clasificacion KNN.

Para este algoritmo el hiperparametro mas importante es k (el numero de
vecinos) ya que este valor gobierna la clasificacién de nuevos registros. Debido a
esto encontrar el valor de k correcto es imprescindible: un valor de k alto puede
significar robustez ante el ruido en el set de datos, pero generalizar en exceso
causando subajuste, por otro lado, un valor bajo causa alta sensibilidad ante el ruido,

causando sobreajuste.

Para encontrar los puntos mas cercanos comunmente se utiliza la distancia
Euclidiana.



(6)

En caso de empate en la votacion el algoritmo asigna la clase del nuevo punto
segun cual sea la clase moda dentro de todo el set de datos, en caso de que las
clases tengan el mismo numero de instancias se asigna el primer valor de moda que

encuentra.

Para resolver ese problema de empates ademas de otros se cred una version

mejorada de KNN.

Weighted KNN(Dudani, 1976):

Version de KNN que asigna pesos a los vecinos mas cercanos, de manera
que un vecino que se encuentre mas cerca del punto a predecir tenga mas fuerza
que un punto que se encuentre mas lejos. El valor del peso es el inverso de la

distancia.

1

w; = d(xq, %) (7)

Random Forest(Breiman, 2001):

Algoritmo de aprendizaje supervisado que entrena un conjunto de arboles de
decision diferentes para realizar una prediccién (o Bagging). En donde cada arbol
predice el mismo registro y se hace una votacion, en el caso de ser clasificacion,

para definir el valor a predecir o se calcula un promedio en el caso de regresion.

La manera en que se generan estos arboles de decision es lo mas importante
de los algoritmos. Cada arbol es independiente y cada uno de ellos esta creado en
base a vectores generados igualitariamente distribuidos. Estos vectores definen que
cantidad de filas muestrean del set de datos original y que columnas o
caracteristicas a elegir, logrando que cada arbol sea independiente uno del otro,

pero creados con las mismas reglas.



Maquina de vectores de soporte (SVM de su nombre en inglés Support Vector
Machine)(Cortes et al., 1995):

Es un algoritmo de aprendizaje supervisado que busca el plano que mejor
separa las clases objetivo. Esto lo logra buscando el hiperplano que maximiza la

distancia entre las 2 clases.

Esto se puede observar en el diagrama de (Yang et al., 2019).

L2

Figura 3. Diagrama explicativo de SVM.

El hiperplano que separa ambas clases se define como:

f(x) = (w-x+b) (8)

La férmula principal que usa SVM es la del margen suave, que permite que
los puntos puedan equivocarse, o no estar bien separados, pero le agrega un costo
a eso. Esto debido a que en la practica no todos los puntos se pueden separar

perfectamente.

10



n

1
min E||W||2+CZEL. 9

w,b,§
i=1

En donde:

w es el vector de pesos, perpendicular al plano separador.

2 T
|Iwl|"es la norma Euclidiana al cuadrado del vector de pesos

C es el hiperparametro de regulacion o costo, un valor alto penaliza
fuertemente los errores de clasificacion, lo que lleva a un margen estrecho,
un valor pequefio permite mas errores a cambio de un margen mas ancho.

¢, es la variable de holgura. Mide cuanto le falta a un punto i para estar en el

lado correcto del margen.

De esta manera:
1 2 . .z
E“W” busca maximizar la separacion de ambas clases. O en otras

apalabras maximizar el margen.
C Y, & es la sumatoria de errores de clasificacion, busca minimizar el error

de clasificacion.

De este modo el algoritmo busca el punto 6ptimo en donde la suma de

ambos, la separacion de clases y la sumatoria de errores, sea minima.

Gaussian Naive Bayes:

Algoritmo de aprendizaje supervisado con bases estadisticas. Este asume

que todas las columnas del set de datos son completamente independientes entre

si, de ahi viene el término “Naive”. En especifico esta versidén del algoritmo asume

que las columnas siguen una distribucion (o Gaussiana). Esto lo hace un algoritmo

muy rapido y barato computacionalmente hablando.

Como lo dice su nombre basa en el teorema de Bayes, el cual explica la

probabilidad de que ocurra un evento en base a otro.

P (B/A) * P(4)

P(A/B) = P5) (10)

11



Este algoritmo define que clase predecir dependiendo de cual de las clases

tiene mas probabilidades de ocurrir. Esto lo logra utilizando la Funcion de Densidad

de Probabilidad Gaussiana.

1 (x—p)*

oV/2n

P(xly) = e 2 (11)

Luego de obtener las probabilidades de un registro nuevo, estas son

multiplicadas y el resultado de ese producto es la probabilidad que se usa para la

decision de clase final.

Al momento de entrenar este algoritmo predictivo, el modelo lo unico que

hace es guardar la varianza y la media para cada columna, separandolo por clase.

Seleccion de caracteristicas

Existen 3 tipos de algoritmos de seleccion de caracteristicas:

Filtro: Algoritmos que principalmente usan métodos estadisticos en los
datos para realizar la seleccion, entregando una puntuacién a cada
caracteristica y luego seleccionando k mejores caracteristicas. Solo
revisan la interaccién entre una variable y la clase objetivo, no la
relacion entre variables y la clase objetivo.

Son muy rapidos y baratos computacionalmente

Envoltura: Entrenan un modelo predictivo repetidas veces obteniendo
una métrica que optimizar cada vez. Este tipo de seleccion de
caracteristicas trata el problema como una busqueda, ya que iteran
multiples veces hasta encontrar la combinacién de caracteristicas que
maximice una métrica de desempefo previamente definida.

Debido a que entrenan un modelo predictivo en cada iteracion estos
algoritmos se vuelven muy costosos computacionalmente.

Integrados 0 embebidos: Se refiere a mecanismos internos que tienen
ciertos modelos predictivos al momento de entrenarse, los cuales los

ayudan a decidir cuales son las caracteristicas mas importantes.

12



Para lograr un mejor rendimiento de los modelos se usaron 2 algoritmos de

seleccidn de caracteristicas de diferentes tipos.

Informacién mutua (Mutual Information):

Algoritmo de seleccion de caracteristicas del tipo filtro, basado en la teoria
de la informacion y la Entropia. Este busca la relacion entre una columna y la clase
objetivo calculando cuanta incertidumbre de la clase objetivo se reduce al conocer
la columna analizada. Logrando atrapar relaciones de diferentes tipos, no solo

lineales como lo hace la correlacion de Pearson.

La entropia, la incertidumbre base, es definida como:

H(Y) =-Y,p(»)log,(p())

Pero lo informacion mutua se calcula exactamente con la Divergencia de
Kullback-Leibler entre la distribucion conjunta de los datos y el producto de sus

distribuciones marginales.

p(xy)
1x7) = Zp(x ) g, (p( )p(y)> (13)

En esta ecuacion:
p(x,y) representa la co-ocurrencia entre las 2 variables o distribucion real.

p(x)p(y) representa la distribucion tedrica si las 2 variables fueran

independientes.

Por lo tanto, la informacion mutua cuantifica cuanta informacion se gana de
la variable objetivo al rechazar la hipotesis de que las variables son
estadisticamente independientes. De este modo, un valor alto indica una alta
dependencia, ya sea lineal o no lineal, entre la caracteristica analizada y la variable

objetivo.

Recursive Feature Elimination with cross-validation (RFEcv)

RFEcy, o Eliminacion recursiva de caracteristicas con validacién cruzada en
espanol, es un algoritmo de seleccion de caracteristicas del tipo de envoltura. Este
es una variacion del RFE normal, que consiste en entrenar un modelo y prueba su

13
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desempenfo, luego elimina un cierto numero de caracteristicas y entrena otro
modelo. Asi hasta encontrar la combinacion de caracteristicas que maximiza cierta
métrica de desempefio. La diferencia principal con RFE normal es que en ese se

define una cantidad de caracteristicas a las que llegar.

Para seleccionar que caracteristicas eliminar depende de que algoritmo se

usé para el entrenamiento.

Este proceso de entrenar un nuevo modelo en cada iteracion lo hace muy
costoso computacionalmente por lo que comunmente se usa luego de métodos de

seleccién de atributos de tipo filtro.

Balanceo de clases

Desbalance de clases:

Este término hace referencia a una diferencia significativa en la cantidad de

registros para cada una de las clases objetivo.

El problema del desbalance de clases es que puede causar sesgo dentro de
los modelos predictivos, de manera que este puede aprender mucho de una de las

clases, pero ignorar la minoritaria.

En base a este problema se desarrollaron diferentes técnicas para

contrarrestarlo.

Balanceo de clases:

El balanceo de clases comprende un grupo de técnicas orientadas a mitigar
la diferencia en la cantidad de registros de las clases. Esto lo pueden lograr ya sea,
eliminando registros de la clase mayoritaria (under-sampling) o agregando registros
a la clase minoritaria (over-sampling).En esta tesis se usara SMOTE, una de las

estrategias de sobremuestreo mas usadas en la literatura.

SMOTE: Synthetic Minority Over-sampling Technique (Chawla et al., 2002):

Esta técnica de sobremuestreo crea registros sintéticos entre una muestra de
la clase minoritaria y un vecino cercano de esa muestra. De manera que cada

registro nuevo es calculado como:

Z =P+ AQ - P) (14)
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En donde:

e Z es el nuevo registro sintético.

e P esun registro de la clase minoritaria.

e (Q es un vecino cercano de P.

e 1 es un numero al azar entre el 0 y el 1, incluyéndolos, siguiendo una

distribucion normal.

Estado del arte

Enfoques clasicos y modelos de referencia:

Historicamente la prediccion de la permeabilidad de la Barrera
Hematoencefalica (BBB) fue abordada mediante modelos lineales y bayesianos.
Autores como (Martins et al., 2012) establecieron lineas bases usando modelos
como Maquinas de Vectores de Soporte y Random forest bajo un enfoque
bayesiano, logrando precisiones cercanas al 95%. Ademas en un trabajo mas
reciente (V. Kumar et al., 2024) usé métodos mas antiguos como lo es el Analisis
Discriminante Lineal (LDA), demostrando que métodos mas simples aun pueden ser
competitivos. Sin embargo, estos trabajos a menudo carecian de generalizacion

debido a que usaban set de datos pequenos y no estandarizados.

Cajas negras, Deep Learning y Ensambles:

Recientemente la literatura a comenzado a preferir modelos de alta
complejidad (“Cajas Negras”) en un intento de capturar relaciones no lineales en las
moléculas. (Shaker et al., 2021) cre6 un modelo usando el algoritmo Light Gradient
Boosting Machine (LGBM) junto con descriptores generados por el software Dragon,
sacrificando interpretabilidad por potencia, al que llamaron LightBBB. Por otro lado,
(Tang et al., 2022) propusieron Deep-B un modelo que combina procesamiento de
lenguaje natural y vision por computadora en una vision de Deep Learning compleja.
Por su lado, (R. Kumar et al., 2022) presentaron DeepPred-BBB, el cual usa redes
neuronales convolucionales(CNN). Sin embargo, aunque estos modelos lograron
buenas métricas de desempeno, autores recientes critican su falta de
interpretabilidad, debido a su naturaleza “Caja Negra”, lo que impide entender las

estructuras quimicas que permiten la permeabilidad en una molécula.
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Estrategias para el balance de datos:

Un desafio importante es el desbalance de clases que actualmente existe, ya
que los data sets poseen mayor cantidad de moléculas permeables (BBB+) que no
permeables (BBB-).(Shi et al., 2021) abordaron explicitamente este problema
probando multiples estrategias de sobremuestreo, incluyendo SMOTE, ADASYN vy
Upsampling. Su estudio concluyé que la combinacion de Upsampling con XGBoost
superaba a otras técnicas, alcanzando una exactitud del 96% en un set de validacion
externo. Sin embargo, Shi et al. entrenaron sus modelos con un data set mas
pequefio y antiguo (aprox. 2354 moléculas), lo cual es significativamente menor al
estandar actual del data set B3DB (7807 moléculas), la cual se utiliza en esta tesis.
Ademas, el uso agresivo de técnicas sintéticas de sobremuestreo como SMOTE

puede causar sobreajuste en el modelo.

Interpretabilidad y nuevos descriptores:

Como respuesta a los modelos de Deep Learning o “Caja Negra”, (Jia &
Sosso, 2024) buscaron maximizar la interpretabilidad de sus modelos, usando el
dataset B3DB. En lugar de usar miles de descriptores complejos, usaron los
“cliques”, fragmentos moleculares funcionales, junto con modelos Naive Bayes y
Random Forest . Su trabajo demostré6 que es posible conseguir igualar el
rendimiento de modelos mas complejos como DeepPred-BBB o LightBBB sin
sacrificar interptretabilidad. Aunque con este trabajo lograron identificar algunos
grupos funcionales clave, su modelo Naive Bayes es un clasificador mas débil en
términos de potencia predictiva pura en comparacién con los ensambles mas

avanzados.

La brecha existente:

A pesar de los avances previamente mencionados, existe una brecha notable
en la literatura. Por un lado, a pesar de su buen desempefio, los modelos de Shi et
al fueron entrenados en una cantidad baja de registros(aprox. 2354 moléculas) en
comparacion a las de B3DB (aprox. 7800 moléculas) lo que hace que no tengan una
buena capacidad de generalizacion, ademas obtuvieron una diferencia de
desempenio considerable en el set de testeo externo lo que puede ser causa de un
sobreajuste debido a la generacidn sintética de registros que utilizaron antes de su
seleccién de caracteristicas. Por otro lado, los modelos de (Jia & Sosso, 2024) son
un poco débiles en términos de desempefio e ignoraron completamente el factor 3D

y la conectividad global de las moléculas.
16



Es por eso por lo que esta tesis propone el uso de los descriptores de RDKit
junto con fingerprints de Morgan. Ademas, se propone el uso de diferentes técnicas
de seleccion de caracteristicas con el posterior aplicacion de SMOTE para

balancear clases.

Metodologia.

Recoleccion de datos.

Para este estudio se utilizé el conjunto de datos publico llamado ‘B3DB’. Este
recurso ha sido utilizado anteriormente en trabajos similares, como el de Jia &
Sosso, quienes desarrollaron diferentes modelos para predecir la permeabilidad con

el objetivo de conseguir resultados interpretables (Jia & Sosso, 2024).

Este set de datos cuenta con 7807 moléculas diferentes, de las cuales 2851
no atraviesan la barrera (BBB-) y 4956 si lo logran (BBB+). Se puede ver una clara
diferencia entre la cantidad de registros entre los 2 tipos de moléculas, esto es
conocido como desbalance de clases. Esto causa sesgo a la hora de la predicciéon

de los modelos.

Caracterizacién de los datos y preprocesamiento.

La caracterizacion de moléculas del set de datos se refiere al proceso de
generar nuevas columnas(también conocidé como caracteristicas) para agregar
informacion relevante en la que los modelos predictivos se puedan apoyar para

realizar sus funciones.

Para la generacion de columnas para el modelo se eligieron 2 grupos de

descriptores moleculares.

1) Set completo de descriptores de RDKit: Esta es una libreria de Python
enfocada en el anadlisis quimico. La cual ofrece un total de 217 descriptores
numeéricos en la version 2025.3.5.

Se escogi6 este set de descriptores ya que abarca un rango amplio de
caracteristicas moleculares 2d. Contiene propiedades fisicoquimicas, conteo
de atomos y enlaces, indices topoldgicos, entre otros.

2) Fingerprint de Morgan: Se genero un fingerprint de Morgan de 1024 bits y 2
de radio (Rogers & Hahn, 2010). Esto entrega 1024 descriptores binarios, en
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donde cada uno de estos representa la presencia o ausencia de
subestructuras moleculares especificas. Este conjunto igualmente fue

calculado usando la libreria RDKit.
Para el preprocesamiento se uso diferentes técnicas.

1) Chequeo de columnas que contengan solo 0’s. Esto se hizo debido a que
por la naturaleza de los descriptores es muy probable que algunas columnas no
contengan registros diferentes de 0 al analizar propiedades muy especificas. Se

elimino 5 columnas pertenecientes a los descriptores de RDKit.

2) Chequeo de valores nulos. Solo se encontraron 5 registros/filas que

contenian valores nulos. Los cuales fueron eliminados.

3) Limpieza varianza 0. Se elimino todas las columnas que tuvieran varianza
igual a 0 ya que estas no aportan ninguna informacién valiosa a los modelos

predictivos.

4) Umbral de coeficiente de variacion. Luego de eliminar todas las columnas
con varianza 0 también se elimind las que poseian un Coeficiente de variaciéon
menor o igual a 15%. Esto debido a que un coeficiente de variacion bajo significa
que los datos presentan poca dispersion relativa lo que significa que estas
caracteristicas no sean muy discriminativas a la hora de diferenciar la clase objetivo

(BBB+/BBB-). A continuacion, se presenta la formula del coeficiente de variacion:

Coeficiente d L, o Desviacion estandar (15)
oeficiente de variacion = — = ;
U Media

5)Analisis de correlacion. Se utilizé un criterio de Correlacion de Pearson,
eliminando las columnas que tuvieran un coeficiente mayor a 0.98 con otra.
Eligiendo cual de las 2 columnas a eliminar segun cual tenia un menor coeficiente
de correlacion con la variable objetivo. Se realizé este filtro ya que un alto coeficiente
de correlacion significa que 2 caracteristicas pueden ser explicadas entre si, por lo

que 1 de las 2 realmente no aporta nueva informacion al modelo.

Luego de la generacion de descriptores y su posterior preprocesamiento se

termind con un Dataset de 7800 filas y 1209 columnas.
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Seleccion de caracteristicas.

Para comenzar el proceso de seleccidn de caracteristicas se realizdé una
divisién de entrenamiento y testeo con 80% de los datos para entrenamiento y el

20% sobrante para testeo.

También, previo a la seleccién de atributos se crea una copia de respaldo del
conjunto de datos para una futura comparacion del resultado de los modelos entre
un conjunto sin ningun cambio y el que si paso por el proceso de seleccién de

atributos.

Con el fin de mejorar el rendimiento de los modelos se aplicaron 2 algoritmos
de seleccion de caracteristicas. Esto de manera continua entregando al segundo

algoritmo el set de datos con las caracteristicas seleccionas por el primero.

1) Mutual Information o informacién mutua en espafiol. Algoritmo que mide la
dependencia entre 2 variables calculando cuanta incertidumbre de la variable
objetivo se pierde si se conoce cierta caracteristica. Esto nos entrega un ranking de

valores en donde se mantuvo el 75% de las columnas con puntuacién mas alta.

2)RFEcv. Recursive feature elimination with cross validation o en espanol,
eliminacion recursiva de caracteristicas con validacion cruzada (Guyon et al., 2002).
Algoritmo que prueba un modelo con K caracteristicas y con cada iteracion elimina
un cierto porcentaje de estas. A diferencia del RFE normal en el que se define un
numero de columnas a mantener, este lo hace automaticamente seleccionando la
mejor cantidad de columnas, lo que hace que sea mucho mas costoso

computacionalmente.

En este caso el algoritmo puntud los modelos segun su f1-score ya que es
considerada una métrica de evaluacion mas robusta por si sola. Se usé validacion

cruzada de 5 pliegues.

Finalmente, luego del proceso de seleccion de caracteristicas se obtuvo un

nuevo set de datos con 897 caracteristicas.

Entrenamiento y optimizacion de hiperparametros.

Debido a que el set de datos esta desbalanceado en una razéon de 2851
registros para la clase negativa (BBB-) y 4956 registros para la clase positiva (BBB+)
se decidio balancear los datos usando la técnica SMOTE, la cual crea registros
sintéticos de la clase mas pequena para igualar la cantidad de registros por clase.
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Este proceso de balanceo de clases se aplicara luego de la seleccion de
caracteristicas debido a que de lo contrario puede generar sobreajuste en los

modelos.

Para cumplir con la tarea de predecir la permeabilidad de las moléculas se
entrenara diferentes modelos de machine learning supervisado, esto significa que
se analizara un conjunto de datos previamente etiquetados para aprender de ellos

y lograr predecir la permeabilidad de moléculas desconocidas por el modelo.

Se eligieron 4 modelos diferentes para entrenar, cada uno de estos
pertenecientes a diferentes paradigmas de aprendizaje para obtener una mejor

comparacion.
Los algoritmos fueron:

Weighted KNN(Dudani, 1976): Una version de KNN(Cover & Hart, 1967) que
considera la distancia de los puntos para asignarles un peso, de manera que los
puntos mas cercanos tienen mas fuerza que los lejanos a la hora de asignar una

clase.

Random Forest(Breiman, 2001): Algoritmo que entrena varios arboles de
decision diferentes, para luego hacer que cada uno de estos prediga un punto y
luego hacer una votacién entre todos estos modelos para hacer la prediccidon

“oficial”, lo que lo hace robusto y resistente a sobre-ajuste.

Maquina de Vectores de Soporte (SVM de su nombre en inglés Super Vector
Machine)(Cortes et al.,, 1995): Algoritmo robusto ante alta dimensionalidad que
busca el hiperplano que mejor separe la clase objetivo. Puede usar diferentes kernel
para aumentar la dimension de los datos de manera de que en esa dimension la

clase objetivo si sea separable.

Gaussian Naive Bayes: Predice la clase objetivo de manera rapida y
estadisticamente, asumiendo que todas las columnas o caracteristicas siguen una

distribucion normal. Elegido para otorgar comparacion ante modelos mas robustos.

Cada una de las versiones de estos algoritmos fueron las de la libreria scikit-

learn de Python.

Todos estos modelos fueron entrenados en los datos de entrenamiento, que
es el 80% de los datos originales.

Se empleo la técnica de busqueda por rejilla (en ingles grid search) con el
objetivo de hallar la combinacion 6ptima de hiperparametros dentro del espacio de
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busqueda definido. Para la evaluacion del desempefio de los modelos generados

por grid-search se uso6 una validacion cruzada de 5 pliegues.

Aqui cada uno de los parametros que se optimizo:

Tabla 1. Hiperparametros optimizados por algoritmo.

Modelo Hiperparametros
Weighted - ‘n_neighbors’. rango de 1 a 20.
KNN
Random - ‘n_estimators” 100 a 1000 con saltos de 50.
Forest - ‘criterion’: gini, entropy o log_loss.
SVM - ‘Kernel’. rbf o poly
-‘C»0.1,1,10, 100.
- ‘Gamma’ (solo para el kernel ‘rbf’): 1, 0.1, 0.01,
0.001.
- ‘Degree’ (solo para el kernel ‘poly’): 2, 3, 4, 5.
Gaussian No se optimizo parametros.
Naive Bayes

Evaluacion e interpretacion de resultados.

El rendimiento final de los modelos de clasificacion se evalué sobre el 20%

de los datos (el set de testeo/prueba) utilizando las siguientes métricas:

o Exactitud: Tasa de predicciones acertadas entre todas las predicciones.

e Precision: Tasa de acierto cuando el modelo predice Verdadero o la clase
positiva.

e Sensibilidad o Recall: Mide la capacidad del modelo de detectar los positivos
entre positivos.

e Especificidad: Mide la capacidad del modelo de detectar los falsos entre los

falsos
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e F1-score: Medida que combina Precision y sensibilidad. Es la media
armonica entre estas dos medidas. Es buena para datos desbalanceados.

e Area bajo la curva ROC: Mide la capacidad del modelo de distinguir entre
clases. Esto a través de la Sensibilidad (o tasa de verdaderos positivos) y la

tasa de falsos positivos.

Con el fin de tener una mayor comprension quimica de los resultados se
obtendra la importancia de caracteristicas(Feature Importance) para ambos
modelos de Random Forest. Esta importancia se deriva de la métrica de impureza
utilizada durante el entrenamiento ( internamente se utiliza como criterio de division).
La impureza de cada caracteristica representa la reduccion de impureza que aporta.
Estas medidas de importancia son entregadas de manera que la suma total de ellas

sea igual a 1.

Resultados

Creacion del set de datos caracterizado

Como resultado de la caracterizacion, preprocesamiento y seleccion de

caracteristicas se obtuvo un conjunto de datos con 897 columnas y 7800 filas.

Cantidad de Columnas

e 1241 1209
1200
1000 897

800

600

400

200

Caracterizacién Pre procesamiento Seleccionde
caracteristicas

Figura 4. Columnas por etapa.

Como parte del analisis exploratorio de datos se generd 3 boxplots de 3
principales descriptores generados por RDKit los cuales fueron: la lipofilicidad
(MolLogP), el peso molecular (MolWT ) y la superficie polar total (TPSA). En la
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Figura 5 se puede ver que las caracteristicas MolLogP y MolWt no presentan una
diferencia entre la distribucion de las clases (BBB-/BBB+) muy significativa. Por otro
lado, la caracteristica TPSA si demuestra una pequefa separacion en la distribucion

de las clases como se puede apreciar en la Tabla 2.

Distribucion de MolLogP agrupado por BEB

Distribucion de MolWt agrupado por BBB
8

e
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BBB./BBB+

BEB./BEB+
Distribucion de TPSA agrupado por BEB
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:

Figura 5. Boxplots de 3 propiedades
importantes.

Muestra MolLogP(a), MolWt(b) y
TPSA(c) agrupadas por clase objetivo(BBB-
/BBB+).

Tabla 2. Promedios de caracteristicas MolWt, MolLogP y TPSA segun clase.

Promedio por clase.
BBB+ BBB-
MolWt 2,877 1,454
MolLogP 340,182 464,717
TPSA 60,100 133,924

Ademas debido a la gran cantidad de columnas que se tienen se hace un

analisis de correlacion para verificar redundancia de informacion en el dataset.

En la Figura 6se puede que ver que las correlaciones existentes dentro de
los descriptores de RDKit siguen una distribucion normal, pero aun asi hay varias
columnas dentro de este grupo que estan altamente correlacionadas. Como se ve
en la Figura 7.
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Frecuencia correlacion de Pearson en descriptores
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Figura 6. Distribucion de correlacion de
Pearson de descriptores de RDKit.
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Figura 7. Mapas de calor de la correlacién de
Pearson de columnas.

Grafico (a) corresponder a todas las columnas del
conjunto de datos, el (b) solo a los descriptores de
RDKIT.

Entrenamiento y evaluacion.

Se entrenaron 4 modelos diferentes: KNN, SVM, Random Forest y Naive
Bayes. Generando 2 grupos, un grupo al que solo se le aplic6 SMOTE y otro que
paso por un proceso de Seleccion de caracteristicas antes que SMOTE. Finalizando
con 8 modelos predictivos diferentes. Ademas, a cada uno de estos modelos se les

optimizo los hiperparametros usando la estrategia grid-search.
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Se calcularon multiples métricas de desempefio para cada uno de los
modelos de prediccidén, los resultados fueron ordenados en tablas para su
visualizacion. La Tabla 3 contiene los resultados de los algoritmos que solo se les
aplicé el algoritmo SMOTE, la Tabla 4 contiene los resultados de los algoritmos a

los que se les aplic6 SMOTE con una posterior Seleccion de Caracteristicas.

Se puede ver que como regla general todos los algoritmos tienen una mayor
Sensibilidad que Especificidad. También es visible poca variacion en la Exactitud de

los modelos predictivos rondando los valores de 0.86 en promedio.

Se ve como 2 algoritmos lograron resultados muy cercanos en ambas tablas,
los cuales son Random Forest y SVM, estos 2 algoritmos son los mejores en base
a las métricas. Pero finalmente el mejor es el algoritmo Random Forest sin seleccion

de caracteristicas debido a su alto valor en AUC logrando un 0.96.

Por otro lado, el algoritmo que peor desempeno tuvo fue Gaussian Naive
Bayes, que obtuvo los peores resultados en ambos grupos. Esto debido a su baja
Especificidad de 0.72 y su baja Exactitud obteniendo 0.84 puntos en su version con

Seleccion de caracteristicas.

Tabla 3. Tabla con métricas de desempefio de modelos solo con SMOTE.

Modelos solo con SMOTE

Modelo |Precision |Sensibilidad | Especificidad Fl-score |AUC |Exactitud
KNN 0,90 0,87 0,84 0,85 0,88 0,86
RF 0,89 0,93 0,80 0,87 0,96 0,88
SVM 0,90 0,92 0,83 0,87 X 0,88
GNB 0,84 0,87 0,72 0,80 0,84 0,82

Tabla 4. Tabla con métricas de desempefio de modelos con SMOTE y seleccion de
caracteristicas.

Modelos con SMOTE + Seleccidn de caracteristicas

Modelo |Precision |Sensibilidad | Especificidad Fl-score |AUC |Exactitud

KNN 0,90 0,89 0,83 0,86 0,89 0,87
RF 0,89 0,93 0,80 0,87 0,94 0,88
SVM 0,89 0,93 0,80 0,87 X 0,88
GNB 0,85 0,90 0,72 0,82 0,86 0,84
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Desempeiio de Modelos solo SMOTE
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Figura 8. Grafico de barras de métricas de desempefio modelos SMOTE.

Separado por métrica para cada uno de los modelos a los que solo se les aplico SMOTE

Desemperio de Modelos SMOTE + Seleccion de Caracteristicas
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Figura 9. Grafico de barras de métricas de desempefo modelos sel. Caracteristicas.

Separado por métrica para cada uno de los modelos a los que se les aplicé SMOTE y Seleccion
de caracteristicas.

En la Figura 10 se ve la matriz de confusion del modelo Random Forest sin
seleccion de caracteristicas. Es desde aqui de donde se calculan todas sus métricas
de desempeio. Se puede ver una tasa mayor de casos BBB+ acertados que para
la clase BBB-.
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Figura 10. Matriz de confusion de modelo Random Forest sin Sel.
caracteristicas.

Con el fin de lograr entender cuales son las caracteristicas mas valiosas a la
hora de predecir si una molécula es capaz de atravesar o no la Barrera
Hematoencefalica se obtuvo la importancia de caracteristicas de los modelos

Random Forest que fueron entrenados.

Tanto en el modelo con Seleccién de caracteristicas (Figura 11) como en el
del modelo sin ella (Figura 12) se puede ver el mismo tipo de distribucion, en donde

solo algunos descriptores tienen una alta importancia y luego esta disminuye.

Podemos ver que algunas de las caracteristicas mas importantes se repiten
en ambos modelos Random Forest. Algunas de las mas importantes: TPSA, ged,
NOcount, NHOHcount. No se puede apreciar ninguna de las caracteristicas

generadas por el fingerprint de Morgan.
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Figura 11. Importancia de caracteristicas para modelo
Random Forest con seleccidon de caracteristicas.
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Figura 12. Importancia de caracteristicas para modelo Random
Forest sin seleccion de caracteristicas.

En base a los a la Figura 11 se gener6 un PairPlot, Figura 13, de las 5
caracteristicas mas importantes, con el fin de comprender la razén de la importancia

de estas.

En ninguna de estas caracteristicas se puede ver una diferenciacién clara
entre las 2 clases (BBB-/BBB+).

Cabe recalcar que este grafico se construyé usando el set de datos sin

SMOTE, para capturar la naturaleza real de los registros.
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Distribucicn propiedades mas importantes
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Figura 13. PairPlot columnas importantes.

Se ven graficos de dispersion y de distribucion univariada de las 5
propiedades/caracteristicas que tienen mas importancia en uno de los modelos
Random Forest.
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Como se puede ver en la Figura 14, también se obtuvo las curvas ROC para
obtener el AUC(Area Under the Curve). Se puede apreciar que los algoritmos
Random Forest obtuvieron la mejor puntuacién con un valor de 0.96 y el peor

resultado fue el de los algoritmos Gaussian Naive Bayes con un valor de 0.84, por

otro lado, KNN obtuvo valores dentro de la media con 0.90 y 0.88.
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Curva ROC RF-Solo SMOTE
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Figura 14. Curvas ROC.

Caracteristica operativa del receptor o ROC acrénimo del inglés Reciever
Operating Characteristic. Junto con el area bajo la curva (AUC de Area
Under the Curve) y una curva demostrativa de un AUC igual a 0.5.
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Discusion

En el presente estudio se implementaron 4 algoritmos de clasificacion
diferentes (KNN, SVM, Random Forest y Naive Bayes). En donde, para efectos
comparativos se generaron 2 variantes de cada uno: con seleccion de
caracteristicas y otra sin ella. Este proceso de seleccion se implementd del modo
que los resultados del primer algoritmo fueron entregados al segundo, con el fin de
encontrar los mejores descriptores que facilitaran la prediccion. Luego de esto, se
le aplico la técnica de balanceo SMOTE al set de datos de entrenamiento para cada

uno de los algoritmos.

Como se puede ver en la Tabla 3 y la Tabla 4 los resultados obtenidos por los
modelos predictivos presentaron limitaciones en términos de Exactitud, ya que
ninguno de estos supero el umbral de 0.9 a diferencia del modelo de (Shi et al.,
2021) que obtuvo un 0.96 de Exactitud con su modelo de XGBoost . Aunque algunos
de los modelos obtuvieron muy buenos resultados en otras métricas como lo es el
modelo de Random Forest sin seleccidn de caracteristicas, que obtuvo 0.96 de
AUC. En otras métricas algunos de los modelos obtuvieron un 0.93 en Sensibilidad

y/ 0 0.83 en lo cual se podria considerar bueno.

En comparacién a otros trabajos que usaron el mismo set de datos, estos
resultados son un poco mas altos que el de (Jia & Sosso, 2024) que tiene un 0.90 y
0.84 de Sensibilidad y Especificidad respectivamente. Pero en términos generales

el desempenio de los modelos no fue tan alto como lo esperado.

Se puede ver que en norma general todos los modelos desarrollados tienen
una mejor Sensibilidad que Especificidad. Lo que significa que son muy capaces de
predecir correctamente la clase positiva o en este caso, las moléculas que
consiguen atravesar la Barrera Hematoencefalica, de hecho. Esto se puede ver en
la matriz de confusién del modelo Random Forest sin seleccién de caracteristicas
en donde hay una cantidad mucho menor de casos positivos(BBB+) clasificados

erroneamente en comparacion a los negativos (BBB-).

En el andlisis del PairPlot (Figura 13) se revela que, a pesar de ser las
caracteristicas con mayor importancia, ninguna de ellas demuestra una separacion
evidente entre las clases. Esto sugiere que el rendimiento no depende de
caracteristicas aisladas, sino que de la interaccion combinada de dichas

caracteristicas.
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Hablando del proceso de Seleccidon de caracteristicas, se puede ver que no
causo una mejora en los modelos de Random Forest y SVM, esto debido a que
ambos modelos son conocidos por ser robustos ante grandes cantidades de
caracteristicas. Por otro lado, se puede ver una mejora menor en el desempefio de
los algoritmos KNN y Gaussian Naive Bayes, aun asi, esta mejora solo es de
alrededor de 0.2 puntos porcentuales lo que no se podria considerar un aumento

significativo.

Con respecto a las caracteristicas mas importantes, lo primero a resaltar es
que ninguno de los descriptores del fingerprint de Morgan se encuentran en el top
de importancia, lo que puede significar 2 cosas: este fingerprint no aporta al modelo

0 ninguno de las columnas generadas por el mismo aporta por si sola.

En términos de las caracteristicas mas decisivas a la hora de definir la
permeabilidad, como era de esperar la superficie polar total (TPSA) y la similaridad
a farmacos orales existentes (ged) son bastante importantes. Pero también se
puede ver otros descriptores que también obtuvieron alta importancia: como el
calculo de polaridad especifica en PEOE_VSA1 (polaridad baja) y PEOE_VSA10
(polaridad alta) lo que puede significar que es importante saber exactamente que
tipo de polaridad tiene una molécula y no solo su carga total. Por otro lado, una
caracteristica a destacar es AtomStereoCenters que cuenta el numero de atomos
que generan estereoisometria o, en otras palabras, que este descriptor se encuentre
dentro del top en importancia significa que al modelo le importa la forma 3D de la
molécula. En base a estos descubrimientos se puede llegar a la conclusion que el
conocer estas caracteristicas sobre una molécula puede orientar la busqueda de

farmacos permeables.

Conclusiones

En conclusidon, se consiguid desarrollar un modelo capaz de predecir
caracteristicas moleculares, especificamente la permeabilidad de los farmacos o

habilidad de traspasar la Barrera Hematoencefalica.

Los resultados evidencian que el modelo de Random Forest sin seleccion de
caracteristicas fue superior que los demas modelos en multiples métricas de

desempefio, alcanzando un 0.96 de AUC y un 0.93 de Sensibilidad. Lo que indica
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que tiene una muy alta capacidad de discernir entre las 2 clases (BBB+ y BBB-). Es
por eso que se determind a este modelo como el mas idoneo y por esa misma razon

este puede ser usado como punto de partida para futuras mejoras.

Como trabajo futuro, se sugiere explorar que el desempefio de los modelos
se puede mejorar utilizando otros fingerprints como lo puede ser el MACCS (Durant
et al., 2002) ya sea reemplazando o agregandolos a los que se usaron en esta tesis,
es interesante agregarlo ya que los mejores algoritmos fueron los mas robustos ante
gran dimensionalidad. También se debe probar otros métodos de seleccion de
caracteristicas diferentes a Informacion Mutua y RFEcv ya que estos en conjunto
no lograron una mejora significativa en los resultados. Por otro lado, se pueden
implementar otros algoritmos predictivos para expandir el area de busqueda vy
encontrar la mejor combinacion de algoritmos predictivos y seleccion de
caracteristicas. Ademas, todavia queda la posibilidad de expandir el set de datos
incluyendo una mayor cantidad de moléculas etiquetadas, lo que puede traer

consigo un mayor desempefo y una mejor generalizacion.
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