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We investigate the Casimir effect for parallel plates within the framework of Hořava-Lifshitz 
theory in 3 + 1 dimensions, considering the effects of roughness, anisotropic scaling factor, and 
an uniform constant magnetic field. Quantum fluctuations are induced by an anisotropic charged

scalar quantum field subject to Dirichlet boundary conditions. To incorporate surface roughness, 
we apply a coordinate transformation to flatten the plates, treating the remaining roughness terms 
as potential. The spectrum is derived using perturbation theory and regularized with the 𝜁 -function 
method. As an illustrative example, we consider plates with periodic boundary conditions.

1. Introduction

The Casimir effect is a phenomenon predicted by quantum field theory arising from vacuum fluctuations at the quantum level. H. 
B. Casimir demonstrated that two parallel, uncharged, and isolated plates, separated by a distance much smaller than their length, 
experience an attractive force due to the quantum fluctuations of the electromagnetic field under specific boundary conditions [1]. 
This effect has been experimentally confirmed with high precision, making it an ideal test to study the properties of quantum vacuum 
fluctuations [2,3]. The effect has been observed in different geometries, and in some cases the force is repulsive, indicating that 
the Casimir effect is influenced by the geometry of the system [4]. Various factors have been shown to influence the Casimir effect. 
Research indicates that boundary conditions related to specific materials, spacetime topology, magnetic field, and temperature also 
modified the energy spectrum [5--9]. The dimensionality of spacetime is a key factor in the Casimir effect, and research on two

dimensional materials, such as the graphene family, has become crucial for technological advances in material science [10].

We aim to investigate the Casimir effect in theories characterized by the breaking of Lorentz symmetry, particularly within 
Hořava-Lifshitz-like frameworks. These theories are based on the establishment of an anisotropy between space and time through an 
anisotropic scaling factor [11]. Several cases exhibiting anisotropic behavior have been analyzed, including extensions involving Klein

Gordon and fermionic fields [12--15]. Other research on Lorentz violation has introduced terms in the Lagrangian that incorporate 
a preferred direction [16,17]. The effects of the magnetic field and finite-temperature have also been studied [18,19,21,20,22--24]. 
In theories of gravity, Hořava-Lifshitz gravity emerges as a promising candidate to complement the high-energy regime of general 
relativity [25,26]. The established anisotropy reduces the general diffeomorphism invariance of the theory and breaks the Lorentz 
symmetry in the ultraviolet regime. The reduction of symmetry leads to the emergence of an instantaneous scalar mode. The foliation 
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of the theory is defined as a set of spatial hypersurfaces accompanied by a preferred temporal direction, which must be preserved by 
reduced diffeomorphisms. The most appropriate variables to describe this preferred foliation are the ADM variables [27]. Recently, 
the renormalization and unitarity of the nonprojectable Hořava theory has been demonstrated, making it a consistent quantum gravity 
theory [28,29]. In previous work [30], we computed the Casimir effect of an anisotropic scalar field on a membrane embedded in a 
conical 2+ 1-dimensional manifold, induced by the presence of a massive located point-particle at rest. Consequently, we found that 
the Casimir energy and force depend on the presence of the massive particle, the anisotropic scaling factor, and the temperature.

In this research, we analyze the modifications to the Casimir energy spectrum of an anisotropic charged-scalar field, caused by the 
presence of roughness on conducting, uncharged parallel plates embedded in a 3 + 1-dimensional spacetime manifold. Additionally, 
we consider the introduction of an external constant uniform magnetic field inside the parallel plates and oriented perpendicular 
to them, where the contributions of the weak and strong field limits are calculated. For a more realistic application, we treat the 
roughness as a perturbation of the flat case. By performing an appropriate change of coordinates, the parallel plates are now a 
flat surface and the remaining terms associated with the roughness are incorporated into the potential term [31--33]. To obtain the 
spectrum of eigenvalues, we apply perturbation theory and use the 𝜁--function for the regularization process [34]. Finally, we provide 
a specific example of plates with periodic behavior.

This paper is organized as follows. In Sect. 2, we present the problem of the rough plates considering a constant and uniform 
magnetic field. In Sect. 3, we apply the regularization method using the 𝜁--function and determine the energy and force density. We 
present the contribution of the weak and strong magnetic field and an explicit example of plates with periodic border. In Sect. 4, we 
present our conclusions.

2. Hořava-Lifshitz-like charged-scalar field

2.1. The anisotropic operator

The Hořava-Lifshitz gravity theory [25,26] is formulated be invariant under anisotropic scaling between space and time, expressed 
by

[𝑡] = −𝑧 , [𝑥𝑖] = −1 , (1)

where 𝑧 represents the anisotropy scaling factor. This leads to a reduction in the symmetry of general diffeomorphisms and a breaking 
of Lorentz symmetry in the ultraviolet regime, making this theory a candidate to complete the high-energy regime of general relativity. 
Consequently, the symmetry that preserves the foliation takes the form 𝛿𝑡 = 𝜁0(𝑡), 𝑥𝑖 = 𝜁𝑖(𝑡, 𝑥𝑘), where the time is reparameterized 
on itself, giving the foliation an absolute physical meaning. In the context of gravity, the most suitable variables to describe this 
foliation are the ADM variables. It is possible to generalize field theories such as the Klein–Gordon, quantum electrodynamic, and 
Yang–Mills theories, where the quantum fluctuations are generated by the anisotropic field. In particular, we investigate the Casimir 
effect arising from the quantum fluctuations of an anisotropic charged-scalar quantum field in the presence of rough, conducting, 
parallel, uncharged plates embedded in a 3+ 1 dimensional spacetime manifold. The analysis assumes Dirichlet boundary conditions 
and considers an external constant uniform magnetic field perpendicular to the plates. Therefore, the generalization of the Lagrangian 
density associated with an anisotropic charged-scalar field is given by

 =𝑁
√
𝑔
(
𝜕𝑡Φ∗𝜕𝑡Φ− 𝑙2(𝑧−1)𝐷∗

𝑖1⋯𝐷∗
𝑖𝑧
Φ∗𝐷𝑖1⋯𝐷𝑖𝑧Φ

)
, (2)

with 𝑙 ≈ 1∕Λ𝑙 , being Λ𝑙 the energy scale introduced to keep the physical dimensionality correct1 [11]. The extended covariant spatial 
derivative has the form 𝐷𝑗 = ∇𝑗 + 𝑖𝑞𝐴𝑗 , where 𝑞 is the charge of the field, 𝐴𝑗 is the vector potential field and ∇𝑗 is the covariant 
derivative associated to spatial metric. For consistency, in 𝑑 = 3 dimensions, the vector 𝐴𝑗 and charge scale as follows

[𝐴𝑖] =
3 − 𝑧

2 
, [𝑞] = 𝑧− 3

2 
+ 1 . (3)

The equation of motion for the charged-scalar field is(
𝜕2
𝑡
+ (−1)𝑧𝑙2(𝑧−1)

(
𝐷2)𝑧)Φ= 0 , (4)

and the spatial operator is defined by

𝐷2 = Δ+ 2𝑖𝑞𝐴𝑗∇𝑗 + 𝑖𝑞∇𝑗𝐴𝑗 − 𝑞2𝑔𝑗𝑘𝐴𝑗𝐴𝑘 . (5)

Gauge invariance allows us to choose the form of the vector potential. Specifically, we set 𝐴𝑖 = (−𝐵𝑦,0,0).
On the other hand, the geometry of the parallel conducting plates is modeled by the Cartesian coordinates, where the 𝑤 coordinate 

is bordered by 0 ≤𝑤 ≤ 𝑎+𝑓 (𝑥, 𝑦), with (𝑥, 𝑦) ∈ℝ2. The parameter 𝑎 represents its width and 𝑓 (𝑥, 𝑦) contains all the information about 
the roughness of the plates, with the assumption that 𝑓 (𝑥, 𝑦)≪ 𝑎. Taking these conditions into account, we implement a change of 

1 In this work, we adopt natural units in which ℏ = 𝑐 = 1.
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variable on the 𝑤 coordinate, in such a way that the plates exhibits flat borders. Then, we define 𝑤= 𝜌 (1 + 𝑓 (𝑥, 𝑦)∕𝑎), with 0≤ 𝜌 ≤ 𝑎. 
The metric associated to these new coordinates is represented by2

𝑔𝑖𝑗 =

⎛⎜⎜⎜⎜⎝
1 + (𝜌∕𝑎)2 (𝜕𝑥𝑓 )2 (𝜌∕𝑎)2 𝜕𝑥𝑓𝜕𝑦𝑓

𝜌

𝑎

(
1 + 𝑓

𝑎 
)
𝜕𝑥𝑓

(𝜌∕𝑎)2 𝜕𝑥𝑓𝜕𝑦𝑓 1 + (𝜌∕𝑎)2 (𝜕𝑦𝑓 )2
𝜌

𝑎

(
1 + 𝑓

𝑎 
)
𝜕𝑦𝑓

𝜌

𝑎

(
1 + 𝑓

𝑎 
)
𝜕𝑥𝑓

𝜌

𝑎

(
1 + 𝑓

𝑎 
)
𝜕𝑦𝑓

(
1 + 𝑓

𝑎 
)2

⎞⎟⎟⎟⎟⎠
. (6)

The Laplace Beltrami operator associated to the metric (6) on the scalar field, is given by

ΔΦ=Δ𝑥Φ+Δ𝑦Φ+ 1 
(𝑎+ 𝑓 )2

[
𝜌2
(
(𝜕𝑥𝑓 )2 + (𝜕𝑦𝑓 )2

)
+ 𝑎2

]
Δ𝜌Φ

+ 𝜌 
(𝑎+ 𝑓 )2

[
2
(
(𝜕𝑥𝑓 )2 + (𝜕𝑦𝑓 )2

)
− (𝑎+ 𝑓 )

(
Δ𝑥𝑓 +Δ𝑦𝑓

)]
𝜕𝜌Φ

− 2𝜌 
𝑎+ 𝑓

(
𝜕𝑥𝑓Δ𝑥𝜌Φ+ 𝜕𝑦𝑓Δ𝑦𝜌Φ

)
. (7)

Conveniently, we perform the following change of variables to obtain dimensionless coordinates:

𝑥 = 𝑢1𝐿1 , −1 ≤ 𝑢1 ≤ 1 ,
𝑦 = 𝑢2𝐿2 , −1 ≤ 𝑢2 ≤ 1 ,
𝜌 = 𝑣𝑎 , 0 ≤ 𝑣 ≤ 1 .

(8)

The perturbative nature of the function 𝑓 (from now on 𝑓 = 𝑓 (𝑢1𝐿1, 𝑢2𝐿2) in the new coordinates) also allows us to define that 
𝐿1,2 ≫ (𝑓, 𝜕𝑖𝑓 , 𝜕2𝑓 ), leading to a helpful simplification of the Laplace-Beltrami operator. Because both parameters 𝐿1 and 𝐿2 are 
infinitely large compared to the distance 𝑎 and the perturbation 𝑓 , we simply set 𝐿1 =𝐿2 =𝐿. For the remaining terms, if we consider 
perturbations of 𝑓 up to second order, we have

ΔΦ=
(

1 
𝐿2 𝜕

2
𝑢1
+ 1 
𝐿2 𝜕

2
𝑢2
+ 1 
𝑎2
𝜕2
𝑣
−(𝑢1, 𝑢2)𝜕2𝑣

)
Φ , (9)

where  is defined by

(𝑢1, 𝑢2) =
2𝑓
𝑎3

− 3𝑓 2

𝑎4
. (10)

Finally, considering the operators (5) and (9), and taking into account the gaugefixing mentioned above, we get the total operator 
associated with the eigenvalue problem

−ΔΦ+ 2𝑖𝑞𝐵𝑢2𝜕𝑢1Φ +
(
𝑞𝐵𝐿𝑢2

)2 Φ = 𝜆Φ . (11)

The Dirichlet boundary conditions are:

Φ(𝑢1, 𝑢2,0) = Φ(𝑢1, 𝑢2,1) = 0 , (12)

therefore, the total spectrum associated with an anisotropic operator  satisfying these boundary conditions, is given by

Φ= (−1)𝑧𝑙2(𝑧−1)𝐷2𝑧Φ= 𝑙2(𝑧−1)𝜆𝑧Φ . (13)

2.2. The perturbation theory

As a first step, we consider the zeroth-order case in perturbations, assuming that 𝑧 = 1,(
− 1 
𝐿2 𝜕

2
𝑢1
− 1 
𝐿2 𝜕

2
𝑢2
− 1 
𝑎2
𝜕2
𝑣
+ 2𝑖𝑞𝐵𝑢2𝜕𝑢1 +

(
𝑞𝐵𝐿𝑢2

)2)Φ(0) = 𝜆(0)Φ(0) . (14)

After applying a coordinate transformation to (14), we can arrive at the well-known Schrödinger equation for a harmonic oscillator. 
Then, the normalized eigenfunctions3 satisfying boundary conditions (12) can be written in terms of Hermite’s polynomials as follows,

Φ(0)
𝑛,𝑚

(𝑘) =

(
4
√
𝛼

𝑛!2𝑛
√
𝜋

)1∕2

𝑒
−
√
𝛼

2 
(
𝑢2−𝛽

)2
𝐻𝑛

(
4
√
𝛼
(
𝑢2 − 𝛽

))
𝑒𝑖𝑘𝑢1 sin (𝑚𝜋𝑣) , (15)

2 It is possible to configure perturbations at both plates so that the contributions can be expressed as a linear combination of the perturbations, hence these can be 
additive or cancel. In this sense, the conclusions about how the magnetic field and perturbation terms affect the Casimir force remain consistent.

3 The normalization is achieved by considering 𝐿 tending to infinity.
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where 𝛼 = (𝑞𝐵𝐿2)2, 𝛽 = 𝑘∕𝑞𝐵𝐿2 and 𝑘 is the eigenvalue of the 𝑢1 coordinate. The corresponding zeroth-order eingenvalue is

𝜆(0)
𝑛,𝑚

= (2𝑛+ 1)𝑞𝐵 +
(
𝑚𝜋

𝑎 

)2
, 𝑛 ∈ℕ0 ,𝑚 ∈ℕ . (16)

To find the first-order eigenvalues in perturbation theory, we must calculate the following integral

𝜆(1)
𝑛,𝑚

=

1 

∫
−1 

1 

∫
−1 

1 

∫
0 

𝑑𝑢1 𝑑𝑢2 𝑑𝑣 Φ∗(0)
𝑛,𝑚

(𝑘) (𝑢1, 𝑢2) 𝜕2𝑣 Φ
(0)
𝑛,𝑚

(𝑘). (17)

The integration over 𝑣 can be performed straightforwardly; however, the integrals over the coordinates 𝑢1 and 𝑢2 become significantly 
more laborious if  depends on both 𝑢1 and 𝑢2. After integrating out 𝑣, we obtain

𝜆(1)
𝑛,𝑚

= −(𝑚𝜋)2

2 

(
4
√
𝛼

𝑛!2𝑛
√
𝜋

) 1 

∫
−1 

1 

∫
−1 

𝑑𝑢1 𝑑𝑢2 𝑒
−
√
𝛼
(
𝑢2−𝛽

)2
𝐻2

𝑛

(
4
√
𝛼
(
𝑢2 − 𝛽

))(𝑢1, 𝑢2). (18)

To simplify the calculations, we assume that the geometric perturbation  depends only on the coordinate 𝑢1. Under this assumption, 
the integral over 𝑢2 can be performed more efficiently. Furthermore, although our method is applicable to any type of roughness, 
from this point forward, we will restrict our analysis to periodic functions. Then, the total eingenvalue4 is

𝜆𝑛,𝑚 = (2𝑛+ 1)𝑞𝐵 + (𝑚𝜋)2
⎡⎢⎢⎣ 1 
𝑎2

− 1
2

1 

∫
−1 

𝑑𝑢1(𝑢1)
⎤⎥⎥⎦ . (19)

3. 𝜻--function regularization

We address the regularization of the spectrum associated to spatial operator using the 𝜁--function method, which is given by

𝜁 (𝑠) = 𝑙−2(𝑧−1)𝑠
𝑞𝐵𝐿2

2𝜋 

∞ ∑
𝑛=0
𝑚=1

⎡⎢⎢⎣(2𝑛+ 1)𝑞𝐵 + (𝑚𝜋)2
⎛⎜⎜⎝ 1 
𝑎2

− 1
2

1 

∫
−1 

𝑑𝑢1(𝑢1)
⎞⎟⎟⎠
⎤⎥⎥⎦
−𝑧𝑠

, (20)

where the factor 𝑞𝐵𝐿2∕2𝜋 has been taken into account due to the degeneracy of the Landau levels. This function has the structure 
of the Epstein 𝜁--function, hence the integral take the form

𝜁 (𝑠) = 𝑙−2(𝑧−1)𝑠
𝑞𝐵𝐿2

2𝜋Γ(𝑧𝑠)

∞ 

∫
0 

𝑑𝑡 𝑡𝑧𝑠−1
∞ ∑
𝑛=0
𝑚=1

exp
[
−𝑡
(
(2𝑛+ 1)𝑞𝐵 + 𝑟𝑚2)] , (21)

where

𝑟 = 𝜋2
⎛⎜⎜⎝ 1 
𝑎2

− 1
2

1 

∫
−1 

𝑑𝑢1(𝑢1)
⎞⎟⎟⎠ . (22)

3.1. Weak magnetic field limit

We consider the weak magnetic field case for fixed 𝑚 when 𝑞𝐵𝑎2 ≪ 1. In Eq. (21) the summation over 𝑛 can be expressed by

∞ ∑
𝑛=0 

exp [−𝑡((2𝑛+ 1)𝑞𝐵)] = 1 
2 sinh (𝑞𝐵𝑡)

, (23)

thus, the 𝜁--function can be written as

𝜁 (𝑠) = 𝑙−2(𝑧−1)𝑠
𝑞𝐵𝐿2

4𝜋Γ(𝑧𝑠)

∞ 

∫
0 

𝑑𝑡 𝑡𝑧𝑠−1

sinh (𝑞𝐵𝑡)

∞ ∑
𝑚=1

exp
(
−𝑟𝑚2𝑡

)
. (24)

At this point, we can do a series expansion over 𝑞𝐵 up to second order as follows,

𝑞𝐵 
sinh (𝑞𝐵𝑡)

= 1
𝑡 
− 𝑞2𝐵2

6 
𝑡 . (25)

4 The analysis of perturbation theory is highly simplified by assuming that the perturbative roughness function is periodic. Consequently, from the second-order of 
eigenvalue perturbations onward, there are no contributions to the second-order perturbations of the roughness.
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With this approximation, the integration in Eq. (24) can be performed directly. Considering the summation over 𝑚, the result is 
expressed in terms of the Riemann 𝜁--function,

𝜁 (𝑠) = 𝑙−2(𝑧−1)𝑠𝐿2

4𝜋Γ(𝑧𝑠) 

(
𝑟1−𝑧𝑠Γ (𝑧𝑠− 1) 𝜁𝑅(2𝑧𝑠− 2) − (𝑞𝐵)2

6 𝑟1+𝑧𝑠
Γ (𝑧𝑠+ 1) 𝜁𝑅(2𝑧𝑠+ 2)

)
.

(26)

To determine the Casimir energy, we must evaluate 𝑠 = −1∕2 and focus on the finite components of the 𝜁--function for different values 
of 𝑧. Specifically in the case 𝑧 = 1, divergent terms arise from the 𝜁𝑅--function in the second term of equation (26). To avoid these 
divergences, we perform a series expansion around 𝑠 = −1∕2. Then, the Casimir energy density for 𝑧 = 1 is5

𝑧=1
𝐶

= − 𝑟3∕2

720 𝜋
+ 𝑟−1∕2𝑞2𝐵2

48 𝜋 

(
𝛾 − 1 − 1

2
ln(𝑟)

)
. (27)

In the 𝑧 ≠ 1 case, the Casimir energy can be expressed in the general form

𝐶 (𝑧) = 𝑙𝑧−1

24𝜋Γ(−𝑧∕2)

[
6 𝑟1+𝑧∕2𝜁𝑅(−𝑧− 2)Γ

(
−1 − 𝑧 

2

)
−𝑟−1+𝑧∕2(𝑞𝐵)2𝜁𝑅(2 − 𝑧)Γ

(
1 − 𝑧 

2

)]
. (28)

The force density is obtained by differentiating with respect to the separation 𝑎 between the plates. Considering both the surface 
roughness described in Eq. (22) and the weak magnetic field up to second-order perturbations, the Casimir force density for 𝑧 = 1
and 𝑧 ≠ 1 is given, respectively, by:

𝑧=1
𝐶

= − 𝜋2

240 𝑎4
+ 𝑞2𝐵2

48 𝜋2

(
ln
(
𝜋

𝑎 

)
− 𝛾

)
+ 𝜋2

120 𝑎5

1 

∫
−1 

𝑓𝑑𝑢1

− 𝜋2

192 𝑎6

⎡⎢⎢⎢⎣
1
2

⎛⎜⎜⎝
1 

∫
−1 

𝑓𝑑𝑢1

⎞⎟⎟⎠
2

+ 3

1 

∫
−1 

𝑓 2𝑑𝑢1

⎤⎥⎥⎥⎦ , (29)

𝐶 (𝑧) =
𝑙𝑧−1

24𝜋Γ(−𝑧∕2)

{
−3𝜋𝑧+2(𝑧+ 2)𝜁𝑅(−𝑧− 2)Γ

(
−1 − 𝑧 

2

)[
− 2 
𝑎𝑧+3

+ (𝑧+ 3)
𝑎𝑧+4

1 

∫
−1 

𝑓 𝑑𝑢1 −
(𝑧+ 4)
4 𝑎𝑧+5

⎛⎜⎜⎜⎝𝑧
⎛⎜⎜⎝

1 

∫
−1 

𝑓 𝑑𝑢1

⎞⎟⎟⎠
2

+6

1 

∫
−1 

𝑓 2 𝑑𝑢1

⎞⎟⎟⎠
⎤⎥⎥⎦ −(𝑧− 2)𝜋𝑧−2𝜁𝑅(2 − 𝑧)Γ

(
1 − 𝑧 

2

) (𝑞𝐵)2

𝑎𝑧−1

}
. (30)

We observe that when the anisotropic scaling factor 𝑧 takes an even value, the 𝜁--function approaches zero, causing both the Casimir 
energy (28) and force (30) to vanish for these values. To illustrate these results, we proceed to calculate the Casimir effect for a specific 
case considering periodic roughness. We choose the following periodic function in the original coordinates 𝑓 (𝑥) = 𝜉 cos(2𝜋𝑥∕𝐿), 
where 𝜉 represents a small parameter that indicates the perturbative nature of 𝑓 . This choice of 𝑓 allows for further simplification 
of Eqs. (29) and (30). Therefore, the force densities take the form6

𝑧=1
𝐶

= − 𝜋2

240 𝑎4
− 𝜋2𝜉2

64 𝑎6
+ 𝑞2𝐵2

48 𝜋2

(
ln
(
𝜋

𝑎 

)
− 𝛾

)
, (31)

𝐶 (𝑧) =
𝑙𝑧−1

24𝜋Γ(−𝑧∕2)

{
−3𝜋𝑧+2(𝑧+ 2)𝜁𝑅(−𝑧− 2)Γ

(
−1 − 𝑧 

2

)[
− 2 
𝑎𝑧+3

−3(𝑧+ 4)
2𝑎𝑧+5

𝜉2
]
− (𝑧− 2)𝜋𝑧−2𝜁𝑅(2 − 𝑧)Γ

(
1 − 𝑧 

2

)
𝑞2𝐵2

𝑎𝑧−1

}
. (32)

In Fig. 1, the behavior of the force density as a function of the separation distance is shown for various values of the anisotropic 
factor 𝑧. We observe that the magnitude of the force density increases in each case due to additional contributions from the second

5 The charged scalar field correspond to Φ= 1 √
2
(𝜙1 + 𝑖𝜙2), where 𝜙1, 𝜙2 are real scalar fields. This means that the system has two degrees of freedom, hence the 

Casimir energy density is 𝐶 = 𝜁 (−1∕2).
6 The terms in the force density that are independent of 𝑎 originate from the uniform energy density, meaning they are proportional to the volume between the 

plates 𝐿2𝑎. If we consider the presence of a magnetic field both outside and inside, these terms do not contribute to the force density [18]. In this work, we consider 
the presence of a magnetic field inside the plates, and it will be applied both in the weak and strong field limit (see Sec. 3.2).
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Fig. 1. Casimir force density as a function of the separation distance 𝑎. We present the curves for different values of the anisotropic scaling factor: 𝑧 = 1,3,5. For the 
cases 𝑧 = 3,5, we set 𝑙 = 0,01. The solid curves represent the case without perturbative terms, while the dashed-point curves represent the case with surface roughness 
𝜉 = 0.05 (units of length) and no magnetic field. The subfigure shows a close-up of the solid curve in the range 𝑎 ∼ 10−6 (units of length) and 𝐶 ∼ 10−5 (units of 
length−4), where it is observed that the dashed curve reflects the small contribution from the magnetic field 𝑞𝐵 = 0.1 (units of length−2).

order perturbation in 𝜉, regardless of the magnetic field. As noted above, for cases where 𝑧 takes even values, the force density is 
zero. When considering the effect of a weak magnetic field (while neglecting the roughness factor), a contribution to the second-order 
perturbation is also observed. However, this contribution remains very close to the planar case (see subfigure in Fig. 1). In general, 
the presence of the weak magnetic field minimally reduces the Casimir force, as illustrated in the subfigure for 𝑧 = 1. Unlike in the 
case of 𝑧 = 1, the force density in (32) depends on the scaling factor 𝑙 for any value of the anisotropic factor. As higher values of 𝑧
are chosen, the force density strongly depends on 𝑙 decreasing in magnitude, as shown in Fig. 1. The anisotropic scaling factor plays 
a crucial role in determining the direction of the force. For example, in the case of 𝑧 = 3, the force becomes repulsive. On the other 
hand, when taking into account the roughness we notice that in each case the force density increases in magnitude compared to the 
planar case. This can be interpreted as the presence of roughness makes the force more detectable in measurements.

3.2. Strong magnetic field limit

We consider the strong magnetic limit 𝑞𝐵𝑎2 ≫ 1 for fixed 𝑚. In this case, from Eq. (21), we take the following asymptotic behavior

𝑞𝐵 
sinh (𝑞𝐵𝑡)

≃ 2𝑞𝐵𝑒−𝑞𝐵𝑡 , (33)

and we apply the Poisson resumation on 𝑚. Then, the 𝜁--function is expressed as

𝜁 (𝑠) = 𝑙−2(𝑧−1)𝑠
𝑞𝐵𝐿2

4𝜋Γ(𝑧𝑠)

∞ 

∫
0 

𝑑𝑡 𝑡𝑧𝑠−1𝑒−𝑞𝐵𝑡
[
−1 +

√
𝜋

𝑟𝑡
+ 2

√
𝜋

𝑟𝑡

∞ ∑
𝑚=1

exp
(
−𝜋2𝑚2

𝑟𝑡 

)]
. (34)

Here we observe that the term containing the summation over 𝑚 decays rapidly for 𝑚> 1, even when taking into account the presence 
of the perturbative factor 𝑟. After performing the integrations, we obtain

𝜁 (𝑠) = 𝑙−2(𝑧−1)𝑠𝐿2

4𝜋 

⎡⎢⎢⎢⎣−(𝑞𝐵)
−𝑧𝑠+1 +

𝑟−1∕2 (𝑞𝐵)−𝑧𝑠+3∕2 𝜋1∕2 Γ
(
𝑧𝑠− 1

2

)
Γ(𝑧𝑠) 

+4 (𝑞𝐵)
1
2 (−𝑧𝑠+5∕2) 𝜋𝑧𝑠 𝑟−

1
2 (𝑧𝑠+1∕2)

Γ(𝑧𝑠) 
𝐾𝑧𝑠−1∕2

(
2𝜋
√

𝑞𝐵

𝑟 

)]
, (35)

where 𝐾𝑧𝑠−1∕2 is the modified Bessel function of second kind. Due to the strong-magnetic field, we can take the asymptotic limit of 

the modified Bessel function 𝐾𝜈 (𝜎) ∼
√

𝜋

2𝜎 𝑒
−𝜎 , making the last term in the above equation more handle. To determine the Casimir 

energy, we must evaluate 𝑠 = −1∕2 and focus on the finite components of the 𝜁--function for different values of 𝑧. For any 𝑧 value, 
divergent terms arise from the Γ--function in Eq. (35). To avoid these divergences, we perform a series expansion around 𝑠 = −1∕2. 
Then, the Casimir energy densities for 𝑧 = 1,3,5 are given, respectively, by:

𝑧=1
𝐶

= −(𝑞𝐵)3∕2

4𝜋 
− (𝑞𝐵)2

8𝜋 𝑟1∕2

(
1 + ln

(
𝑞𝐵

4 

))
− (𝑞𝐵)5∕4 𝑟1∕4

4𝜋2 𝑒
−2 𝜋

√
𝑞𝐵

𝑟 , (36)
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Fig. 2. Casimir force density as a function of separation distance and magnetic field, for anisotropic scaling parameters 𝑧. (a) The solid, large dashed, and dashed 
curves represent roughness (𝜉 = 0.05 (units of length)) with a constant uniform magnetic field (𝑞𝐵 = 1000 (units of length−2)). (b) The two curves show the Casimir 
force density for fixed separation distance (𝑎= 0.5 (units of length)) and roughness (𝜉 = 0.05 (units of length)).

𝑧=3
𝐶

= − 𝑙2 (𝑞𝐵)5∕2

4𝜋 
− 𝑙2 (𝑞𝐵)3

64𝜋 𝑟1∕2

(
7 + 6 ln

(
𝑞𝐵 𝑙4∕3

4 

))
+ 3 𝑙2 (𝑞𝐵)7∕4 𝑟3∕4

8𝜋3 𝑒
−2 𝜋

√
𝑞𝐵

𝑟 , (37)

𝑧=5
𝐶

= − 𝑙4 (𝑞𝐵)7∕2

4𝜋 
− 𝑙4 (𝑞𝐵)4

384 𝜋 𝑟1∕2

(
37 + 30 ln

(
𝑞𝐵 𝑙8∕5

4 

))
− 15𝑙4 (𝑞𝐵)9∕4 𝑟5∕4

16𝜋4 𝑒
−2 𝜋

√
𝑞𝐵

𝑟 . (38)

As in the previous section, we perform a series expansion on the perturbation 𝑟 (see Eq. (22)). The force expressions for each 𝑧 value 
are functions of integrations over the roughness function 𝑓 (Eq. (10)), similarly to what occurs in the weak field limit (see Eqs. (29) 
and (30)). Then, as a last step, we use a periodic function for the roughness, in the same way as was done in the weak field limit: 
𝑓 (𝑥) = 𝜉 cos(2𝜋𝑥∕𝐿). With this perturbative function the following condition arises: 𝑞𝐵𝜉2 ≫ 1. This condition allows the integrations 
to be reduced, hence the Casimir force densities are given by

𝑧=1
𝐶

= (𝑞𝐵)2

8𝜋2

(
1 + ln

(
𝑞𝐵

4 

))(
1 + 3𝜉2

4𝑎2

)
− (𝑞𝐵)5∕4

8 𝜋3∕2𝑎3∕2

(
1 + 4𝑎

√
𝑞𝐵

)
𝑒−2 𝑎

√
𝑞𝐵 , (39)

𝑧=3
𝐶

= 𝑙2(𝑞𝐵)3

64𝜋2

(
7 + 6 ln

(
𝑞𝐵 𝑙4∕3

4 

))(
1 + 3𝜉2

4𝑎2

)
+ 3 𝑙2(𝑞𝐵)7∕4

16 𝜋3∕2𝑎5∕2

(
3 + 4𝑎

√
𝑞𝐵

)
𝑒−2 𝑎

√
𝑞𝐵 , (40)

𝑧=5
𝐶

= 𝑙4(𝑞𝐵)4

384𝜋2

(
37 + 30 ln

(
𝑞𝐵 𝑙8∕5

4 

))(
1 + 3𝜉2

4𝑎2

)
− 15 𝑙4(𝑞𝐵)9∕4

32 𝜋3∕2𝑎7∕2

(
5 + 4𝑎

√
𝑞𝐵

)
𝑒−2 𝑎

√
𝑞𝐵 . (41)

As in previous findings, when 𝑧 takes even values, the force density vanishes. For 𝑧 = 1 we can note that the force density contains 
a term independent of the separation distance 𝑎 (this term contributes because we have considered the absence of the magnetic 
field on the outside of the plates), and another term that depends on the roughness factor of order two that must be considered. For 
𝑧 = 3,5 we see that the forces have a structure similar to the case 𝑧 = 1, but it has a strong dependence on the scaling factor 𝑙. This 
scaling factor plays a crucial role in determining the orientation of the force, due to its presence in the logarithm function. As the 
plate separation 𝑎 increases, the Casimir force density approaches the global factor that only depends on the magnetic field for a 
fixed 𝑙, while the exponential contribution becomes negligible. As anisotropy increases, the magnitude of the force decreases and its 
orientation changes (see Fig. 2(a)). In Fig. 2(b), for a fixed 𝑎, increasing the value of 𝑞𝐵 leads to a rapid decrease in force density, 
particularly for larger anisotropic factors 𝑧. The force density for 𝑧 = 1 is positive and several orders of magnitude greater than for 
𝑧 > 1.

4. Summary and conclusions

We investigate the case of uncharged, isolated, rough parallel plates embedded in a 3 + 1-dimensional manifold. Vacuum fluc

tuations are induced by an anisotropic charged-scalar quantum field with Dirichlet boundary conditions. The Lagrangian density 
is formulated within the framework of a Hořava-Lifshitz-like theory. Additionally, we analyze the effect of a constant and uniform 
magnetic field inside the parallel plates and oriented perpendicular to them. To address the roughness of the plates, we perform a 
change of variables that flattens their borders, treating the remaining terms as a perturbative roughness incorporated into a potential. 
To determine the eigenvalues, we apply perturbation theory up to first order and utilize the 𝜁 -function regularization method. We 
present an explicit case where the perturbation of parallel plates exhibits periodic behavior. As in previous works, we find that the 
Casimir energy and force vanish when the anisotropic scaling factor takes even values, independently of any other physical factors in 
the result [30,32]. Contributions from roughness up to the second order in perturbations, as well as the magnetic field, are present 
as expected. For odd values of the anisotropic factor, we examine the limiting cases of the magnetic field. In the weakfield case, 
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magnetic effects are minimal. Consequently, we find that energy and force densities are significantly modified by roughness. As found 
in Eq. (32), unlike in the case of 𝑧 = 1, the force density depends on the scaling factor 𝑙 for any value of the anisotropic factor. As 
higher values of 𝑧 are chosen, the force density strongly depends on 𝑙 decreasing in magnitude. The anisotropic scaling factor plays 
a crucial role in determining the direction of the force. On the other hand, when taking into account the roughness we notice that in 
each case the force density increases in magnitude compared to the planar case.

In the strongfield regime, for 𝑧 > 1 we see that the forces have a structure similar to the case 𝑧 = 1, but it has a strong dependence 
on the scaling factor 𝑙. As the plate separation 𝑎 increases, the Casimir force density approaches the global factor that only depends 
on the magnetic field for a fixed 𝑙. Anisotropy directly affects the orientation of the force density. Besides, the increasing the value 
of 𝑞𝐵 leads to a rapid decrease in the force density, particularly for larger anisotropic factors 𝑧, however, the force density for 𝑧 = 1
is positive and more dominant than the 𝑧 > 1 cases.

Since the Casimir effect can be measured with precision, the impact of roughness could contribute to estimating the Lorentz

breaking parameters in the theory. Therefore, the Casimir effect is essential for verifying the breaking at high energies. By adding 
other factors to the result, such as temperature and different boundary conditions, is expected to modify the Casimir effect with rough 
edges. By defining the perturbation as a periodic function significantly simplifies the final result. If more complicated functions are 
chosen for the perturbation, other resolution methods must be used. We will consider these cases in future work.
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