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1 Introduction

In this article, we investigate the transcendental structure of two-point functions in the ABJM
model, the ' = 6 superconformal Chern-Simons theory in three spacetime dimensions [1].
This is motivated by the results found in N' = 4 SYM, where uniform transcendentality
appears in the perturbative computation of two-point functions of protected dimension-2
operators calculated in dimensional regularization [2]. We aim to determine whether and
how a similar phenomenon occurs in the ABJM model.

To this purpose, we focus on two-point functions of protected scalar operators in the
ABJM model of the form O = Tr(AA), where A represents a complex scalar of the theory.
While such correlators are tree-level exact in N/ = 4 SYM (in exactly four dimensions),
in the ABJM model only their dimension is protected from quantum corrections. Their
normalization is not. We provide evidence that the dimensional regularization expansion
of this normalization exhibits uniform transcendentality at two loops. We conjecture that
this property extends to all orders.

Once established empirically, uniform transcendentality is then leveraged to facilitate an
analytic evaluation of the non-trivial three-loop master integrals in momentum space appearing
in the calculation. We perform high precision numerical evaluations of their expansions in
dimensional regularization, via dimensional recurrence relations [3]. We then use the uniform
transcendentality conjecture to construct combinations exhibiting this property. Finally, we
reconstruct their expansion coefficients as rational combinations of suitable bases of uniformly
transcendental Euler sums via PSLQ [4-6] or LLL [7].

This paper is structured as follows. In section 2, we provide a brief review of the relevant
aspects of the ABJM model and introduce the scalar operators whose two-point functions we



will compute. In section 3, we perform the perturbative analysis of the two-point functions up
to two-loop order. In section 4, we observe empirical evidence of uniform transcendentality
and conjecture its extension to all loop orders. In section 5, we expand the relevant master
integrals to higher orders in dimensional regularization, assuming uniform transcendentality
and corroborating its validity. In section 6 we compare to N'=4 SYM in four dimensions.
Finally, we conclude with future perspectives.

2 Two-point functions in the ABJM model

We work in ABJM theory in three dimensions [1]. The coupling constant is identified with
the inverse Chern-Simons level k~! and we will perform perturbation theory around k& — occ.
The other two parameters of the model are the ranks of the gauge groups, which we keep
distinct: N; and N, as in [8]. We consider two-point functions of dimension-1 protected
operators in ABJM of the form

(O(@)0(0)) O =Ti(AA), O = Tr(AA) (2.1)

with one scalar field A of the theory. Their spacetime structure is fixed by conformal
invariance in three dimensions
N(k)

(22)*

(0(x)0(0) = (2.2)

Supersymmetry prevents the operator’s dimension from renormalizing, so that it is fixed to 1

N(k)
2

(0@)0(0) = (2.3)

X

We consider its Fourier transform to momentum space, where the perturbative calculation
we set out to undertake is more manageable. Then

(k)

(2.4)
where we have modified the normalization accordingly and the spacetime dimension is strictly
d = 3. Since the dependence on the momentum is fixed, we set p?> = 1 throughout the rest
of the paper and focus on the norm n(k) in momentum space. Unlike N =4 SYM, such a
numerator is not tree level exact and has been evaluated to two loops [9, 10]

n(k) = 2N; Ny <1 TN NG —2) (k‘4>> (2.5)
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where the factor 2 emerges from the two identical contractions of the scalars and might
be removed with a different operator normalization or choosing different field flavors. We
aim to study the transcendental properties of n(k), especially whether its perturbation
theory hints at uniform transcendentality when expanded to higher orders in dimensional
regularization d = 3 — 2e.

The one loop correction to the two-point function vanishes identically. In fact, this
extends to all odd loop orders. An odd number of antisymmetric Levi-Civita tensors appears



at such perturbative orders, however only a single vector is present in the calculation: x or
p. Any contraction of indices with such a vector yields a vanishing result. On the contrary,
at even orders an even number of antisymmetric tensors appears, which evaluate in general
to products of metric tensors.

For our analysis, vanishing of odd loop contributions is a nuisance, since the next non-
trivial perturbative order is four loops. Such a calculation would involve a high computational
complexity and entails the expansion to high orders in dimensional regularization of five-loop
momentum integrals, which is currently unknown in three dimensions.

Partial evidence for uniform transcendentality arises from the calculation of [11], predict-
ing that the maximally color imbalanced component of the two-point function is expressed
to all orders, at ¢ = 0, by the expansion of

k sin (”TNl)
=2N1Ng —————=~
maximal powers of Ny 81 N- 1

n(k) (2.6)

producing rational multiples of zetas (7, at even integer L values, at loop L.

3 The calculation

The two-point function can be evaluated straightforwardly in terms of Feynman diagrams.
A key subtlety is that the dimensional reduction scheme [12] is essential for uniform tran-
scendentality [13, 14]. This ensures proper handling of epsilon tensors and v matrix algebra
in the numerators.

We perform the calculation at two loops, separating the result according to the color
factors

n(k) = 2N1 Ny (no + % ((N12 + N22) CN12(6> + N1N20N1N2 (6) + 01(6))) + 0O <k74) (3.1)

In momentum space, the tree level result is just the bubble integral

np = —Q— = G(1,1) (3.2)

T ($—a)T (4=B)T (a+p5- 1)
(4m)3/2T ()T (B)T(d — o — B)

where [15]

G(a,p) = (3.3)
By this normalization choice, we are discarding unimportant factors e~ 7¢(47)¢ for each
momentum loop integration, which can be absorbed in the overall factor and in the coupling
constant. We recall that the external momentum scale p? was set to unity.

After the evaluation of Feynman diagrams, the result is reduced to master integrals. We
used FIRE [16, 17] and LiteRed [18, 19] for the task. This leads to the following result

cN?  16(2d —5)(3d — 8) 16(3d — 8)
R T A S
—32@-16—@@@—“6@ (3.4a)
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The diagrams above symbolize the respective master integrals. We have factored out a

common 72, for later convenience.

4 Uniform transcendentality

The next step to inspect transcendentality properties consists in expanding master integrals
in dimensional regularization for d = 3 — 2¢. The simplest can be expressed in terms of I
functions and expanded straightforwardly

206 (L4 1)

< -=al
@ G(1+2€,1)
-OOO-

=G(1,1) G(i —|—€,1)
= G(1,1) (4.1)

The @ master integral possesses an exact expression in terms of a hypergeometric
function [20]

@: (i:); G(1,1)20 <532d>r<31> T(d—3) (4.2)
r(s-1) . (1,4—d,d—2 1>_W00t(3”d)
(d—4)r(3—g)r(2d—6)32 5-d3—§ I'(d - 2)

Its expansion around three dimensions can be performed with the algorithms of Hyp-

Exp [21, 22] and HPL [23, 24]. However, at a certain order explicit expressions for harmonic
polylogarithms at specific values are not tabled any longer. Hence, extracting analytic



expressions a posteriori, as described momentarily, becomes more practical. An expansion
up to transcendental weight 6, i.e. order €* can be found in [25]

_ 3G 21(3 B 3L1€2) .
256 128 128

< _2 e G0 8L 669C4>
128 64 4 7 1024
(8- S+ Bt 2B S g, TG 100G o
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U e 0 R e ) br0(?)

The following notation has been used for transcendental numbers in this formula

1
L, =Li, (2) (4.4)
so in particular L1 = log 2. Multiple zeta values and Euler sums are defined according to
(—5,—1 = —0.0299016 . .. (4.5)

To the best of our knowledge, the non-planar master integral lacks a closed expression
and has to be expanded with some suitable method. The problem of propagator master
integrals has been extensively analyzed in literature in four dimensions [26-28]. Here we
apply the dimensional recurrence relations method [3], because the problem of expanding such
master integrals has already been addressed, solved and coded in the heaven-sent package
SummerTime [25] (see also [29]). With this implementation, expanding the integrals at higher
orders in € is fast and precise. After suitably expanding numerically the integrals to some
hundreds of digits, coefficients are reconstructed by Mathematica’s implementations of the
PSLQ and LLL algorithms. For this task, a basis of transcendental numbers is necessary. Up
to the orders we investigated in this work, it seems that Euler sums up to transcendental weight
1+ 2 suffice for determining the expansions at order € (though it was observed in [25] that this
is not the case for four-loop integrals). Up to order €*, the non-planar master integral reads
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16 64 2 32 64 32 8
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(4.6)

From the definition of the integrals or inspection into their expansion, it is clear that some
simplifications are obtained by dividing by the one-loop bubble integral O . In terms
of the two-point functions, this also serves the purpose of factoring the tree level result and
normalizing the loop contributions by that.

Contrary to N'= 4 SYM, such a normalization by the tree level result is not necessary
for exposing uniform transcendentality. The tree level contribution is proportional to the
integral G(1, 1), which happens to be uniformly transcendental in d = 3 — 2¢ dimensions.
Hence, normalizing by this contribution does not alter the transcendentality properties of
the two-point function.

Plugging the integral expansions into (3.4) produces the following normalized two-loop
corrections associated to different color structures
N Gyt €(19Cs — 24CoLy) + € (—80Cs — A8 [2 + ALY + 961
) 2+ € (19¢3 G 1)+6( Ca GLy+4L7 + 4)
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— 320, L3 — 1002(4 Ly —
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3 16
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+15
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(4.7)
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The result is manifestly uniformly transcendental, up to the order to which it was expanded.
A few more orders are indirectly evaluated below, where we leverage uniform transcendentality
to streamline the expansion of the non-trivial master integrals.

The empirical evidence exposed above suggests that, analogously to N' = 4 SYM
in four dimensions, the two-point function of protected, dimension-1 operators in ABJM
exhibits uniform transcendentality. Unfortunately, the peculiarities of the ABJM perturbative
expansion limit the scope of this evidence to only one non-trivial order, two loops. What is
more with respect to N/ =4 SYM is that uniform transcendentality holds across the various
color structures, providing different constraints on the transcendental structure of the master
integrals. Only two are independent though, since

20N12 +cnnN, +c1 =0 (4.10)

to all orders in ¢, as ascertained at the level of master integrals (3.4). The choice N; =
Ny = 2 yields the N/ = 8 BLG model [30, 31] which consequently also exhibits uniform
transcendentality.

5 Constraints on the transcendentality of master integrals

In this section we discuss the consequences of the uniform transcendentality conjecture
at the level of the master integrals. Since there are two independent combinations which
exhibit the property, we can infer uniformly transcendental combinations involving the two
non-trivial master integrals separately.

In the coefficient N2 (3.4a) we can observe that @ and OO are independently
uniformly transcendental, since they can be expressed in terms of I' functions of uniform

transcendental expansions. The other master integrals are made uniformly transcendental by
the rescalings (1 — 4e) (1 — 6¢) —@— and (1 — 6¢) <—=(~. Precisely the combination

o ) ((1 RE @(}) (5.1)

appears in (3.4a), upon setting d = 3 —2¢. Therefore the remaining integral in (3.4a) @

has to be uniformly transcendental too, which is in fact the case. An explicit expansion is
provided in (4.3) up to order ¢*. From a numerical expansion with SummerTime, we can



reconstruct a few more expansion coefficients in terms of rational combinations of uniformly
transcendental bases. The full bases of transcendental Euler sums with only an upper limit
on transcendentality possess more elements. Hence, using the former demands less precision
in the numerical evaluations and allow for much faster reconstructions. By taking the ratio
with the one-loop bubble integral

10 Q<O

additional simplifications occur as various transcendentals constructed thanks to products of
log 2 dropping out of the expansion. We state a couple further terms, up to transcendental
weight 8 or €%, to demonstrate this fact and corroborate the uniform transcendentality property
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864(o L —
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(5.3)

Two additional terms, up transcendental weight 10, are displayed explicitly in the ap-
pendix, since they start becoming bulky. Different choices of basis elements for Euler sums
are possible.



From relation (3.4c) we can infer that the lower transcendental part of the non-planar
master integral is exactly provided, order-by-order, by the negative of the lower transcendental
terms of all other contributions

_ (8(1—4e)(1 — 6€) (1726 + 60e + 3)
@ lower transc B ( (1 + 26)4 @+
56(1 — 6¢)(1 + 6¢)e 768(1 + 4e)e?
(1+2¢)3 @ (14 2€)3 @
20(1 + 6e)e
i Q>

Surprisingly, the terms on the right-hand-side of this equation turn out to provide exactly

(5.4)

lower transc

the lower transcendental part of the non-planar integral

~ 8(1 —4e)(1 — 6e) (172€* + 60e + 3)
@ lower transc B (1 —"_ 26)4 ©+ (5.5>
56(1 — 6€)(1 + 6¢)e 768(1 + 4€)e? 20(1 + 6¢)e
S0 T ST <O

This is an empirical observation and we lack an explanation for it. As a result, the expansion

of ¢1 in (3.4c) coincides with the maximally transcendental part of the non-planar master
integral. Conversely, the expression

— 4€ — 0€ 62 €
56(1 — 6¢)(1 + 6e)e 768(1 + 4e)e? 20(1 + Ge)e
B (1+2¢)3 OO—+ (1+ 2¢)3 @+ (1 + 2¢)2 @

is, conjecturally, uniformly transcendental to all orders in e.

We leverage this conjecture to facilitate the analytic extraction of its coefficients. A
numeric evaluation of (5.6) can be fitted to numbers belonging to a uniform transcendental
basis. The working hypothesis for this integral is that Euler sums are sufficient for the task.
A few simplifications occur after normalizing by the one-loop bubble integral

o0 =v /< - (5.7



The expansion of such a combination reads, up to transcendental weight 8
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(5.8)

and two additional orders are presented in the appendix. The fact that these expansions
can be determined in terms of uniformly transcendental numbers is a corroboration of the
uniform transcendentality conjecture.

From a practical perspective, working with uniformly transcendental objects offers
substantial advantages in the reconstruction. For instance, fixing an analytic form for U(e) at
order > and €% (transcendental weights 7 and 8) can be performed with basis sizes of 21 and
34 independent Euler sums. The reconstruction achieves stability around order 180 and 380
digits, respectively. Full bases of all independent Euler sums up to transcendental weights
7 and 8 have sizes 54 and 88. In those cases, an effective coeflicient reconstruction of the
non-planar master integral would require order 570 and 1250 digits, respectively.

Since the number of linearly independent basis elements for Euler sums at fixed tran-
scendental weight n grows according to the Fibonacci sequence F,, 11 [32], the number of
elements in a full basis considering transcendentality < [ is

nzi:anH = \}g ((— (2+x/5) ¢)7l+ (2+\/5) qﬁl) —1

where ¢ is the golden ratio. The full basis is asymptotically ¢? times larger than the uniformly
transcendental one, with a relative difference asymptoting ¢.

,10,



6 Comparison to four dimensions

An analogous observation of uniform transcendentality for two-point functions of lowest
dimensions protected operators in N' =4 SYM was put forward in [2]. Conjecturing it holds
to all orders in €, it implies that the following combination of three-loop master integrals
is uniformly transcendental when expanded at d = 4 — 2¢

1 16(d — 3)*
G(L 1) <@+ (d— 4)2 _m_
16(2d — 5)(3d — 8)(d(9d — 65) + 118)
¥ -1 <>
128(2d — 7)(d — 3)? (48(3d — 10)(3d — 8)(d — 3)
e s (@1 =0

L= ) 1)

This observation can then be used to facilitate reconstructing the expansion coefficients of

the non-planar master from numerics at high order in e, if needed.

At four loops the question of uniformly transcendental master integrals is more interesting.
The uniform transcendentality conjecture for two-point functions of dimension-2 operators
only provides one constraint, over order twenty master integrals, which is not sufficient for
extracting useful information. In case other independent constraints can be derived from
other observables, then the situation could improve.

7 Conclusions

In this work we conjecture that the dimensional regularization expansion of the two-point
function of supersymmetric dimension-1 operators in ABJM exhibits uniform transcendentality.
This is an empirical perturbative statement verified only at two-loop order and up to a certain
fixed power of the regulator ¢, that is €3. The extension to further perturbative orders, and to
the whole € expansion can only be conjectured. As additional support, the same phenomenon
seems to occur in four dimensions for ' =4 SYM theory [2]. In that context, a few more
data points are accessible, since it is possible to extract non-trivial results at odd loop orders,
where the ABJM analogues vanish trivially.

While in N'=4 SYM no transcendentals outside the MZV realm pop up at three-loop
perturbative order (four loop momentum integrals), the uniform transcendentality conjecture
in ABJM involves Euler sums already at two-loop order. This causes a more demanding
extraction of analytic coefficients from numerics, since the basis of numbers whose coefficients
are unknown is larger. This in turn requires additional precision in the numerical evaluation.
We have leveraged the uniform transcendentality conjecture to construct a combination of
master integrals of uniform transcendental weight, whose analytic determination is then more
straightforward. We have estimated the relative advantage of a uniformly transcendental
basis of Euler sums over the complete one, just because its asymptotics are governed by the
golden ratio, henceforth aesthetically satisfactory.

— 11 —



If a similar uniform transcendentality statement could be put forward for some two-point
correlator in ABJM requiring four-loop master integrals in momentum space, it would likely
involve transcendentals beyond Euler sums, whose appearance was diagnosed in [25]. This
would constitute a natural development of the present work.

In [2] a relation was observed between the two-point function of protected operators and
their three-point function in the limit of a soft external momentum. It would be interesting
to explore whether a similar relation holds for three-point functions in ABJM. This might
shed additional light on conflicting and not completely satisfactory results in literature for
such three-point functions [9, 10].
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A Expansions up to transcendental weight 10

A.1 Planar non-trivial master integral

At transcendental weight 9 V (e) reads
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and at transcendental weight 10
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The rational coefficients experience a suspicious jump upwards in complexity starting at
transcendental weight 10, but this is due to the presence of a large ubiquitous prime number,
1889. A similar phenomenon occurs for MZV’s at weight 12, due to the large prime 691
in the numerator of the Bernoulli number Bi,. The stability of the reconstruction of the
coefficients has been tested across several hundreds of precision in the numerical evaluation
of the integrals, beyond its onset.

A.2 Non-planar uniformly transcendental combination of master integrals

The expansion coefficients of U(e) up to transcendental weight 10 read
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