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1 Introduction

In this article, we investigate the transcendental structure of two-point functions in the ABJM
model, the N = 6 superconformal Chern-Simons theory in three spacetime dimensions [1].
This is motivated by the results found in N = 4 SYM, where uniform transcendentality
appears in the perturbative computation of two-point functions of protected dimension-2
operators calculated in dimensional regularization [2]. We aim to determine whether and
how a similar phenomenon occurs in the ABJM model.

To this purpose, we focus on two-point functions of protected scalar operators in the
ABJM model of the form O = Tr(AA), where A represents a complex scalar of the theory.
While such correlators are tree-level exact in N = 4 SYM (in exactly four dimensions),
in the ABJM model only their dimension is protected from quantum corrections. Their
normalization is not. We provide evidence that the dimensional regularization expansion
of this normalization exhibits uniform transcendentality at two loops. We conjecture that
this property extends to all orders.

Once established empirically, uniform transcendentality is then leveraged to facilitate an
analytic evaluation of the non-trivial three-loop master integrals in momentum space appearing
in the calculation. We perform high precision numerical evaluations of their expansions in
dimensional regularization, via dimensional recurrence relations [3]. We then use the uniform
transcendentality conjecture to construct combinations exhibiting this property. Finally, we
reconstruct their expansion coefficients as rational combinations of suitable bases of uniformly
transcendental Euler sums via PSLQ [4–6] or LLL [7].

This paper is structured as follows. In section 2, we provide a brief review of the relevant
aspects of the ABJM model and introduce the scalar operators whose two-point functions we
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will compute. In section 3, we perform the perturbative analysis of the two-point functions up
to two-loop order. In section 4, we observe empirical evidence of uniform transcendentality
and conjecture its extension to all loop orders. In section 5, we expand the relevant master
integrals to higher orders in dimensional regularization, assuming uniform transcendentality
and corroborating its validity. In section 6 we compare to N = 4 SYM in four dimensions.
Finally, we conclude with future perspectives.

2 Two-point functions in the ABJM model

We work in ABJM theory in three dimensions [1]. The coupling constant is identified with
the inverse Chern-Simons level k−1 and we will perform perturbation theory around k → ∞.
The other two parameters of the model are the ranks of the gauge groups, which we keep
distinct: N1 and N2, as in [8]. We consider two-point functions of dimension-1 protected
operators in ABJM of the form

⟨O(x)Ō(0)⟩ O = Tr(AA), Ō = Tr(ĀĀ) (2.1)

with one scalar field A of the theory. Their spacetime structure is fixed by conformal
invariance in three dimensions

⟨O(x)Ō(0) = N(k)
(x2)∆ (2.2)

Supersymmetry prevents the operator’s dimension from renormalizing, so that it is fixed to 1

⟨O(x)Ō(0) = N(k)
x2 (2.3)

We consider its Fourier transform to momentum space, where the perturbative calculation
we set out to undertake is more manageable. Then

⟨O(p)Ō(−p) = n(k)
|p|

(2.4)

where we have modified the normalization accordingly and the spacetime dimension is strictly
d = 3. Since the dependence on the momentum is fixed, we set p2 = 1 throughout the rest
of the paper and focus on the norm n(k) in momentum space. Unlike N = 4 SYM, such a
numerator is not tree level exact and has been evaluated to two loops [9, 10]

n(k) = 2N1N2

(
1
8 − π2 (N2

1 + N2
2 − 2

)
48k2 +O

(
k−4

))
(2.5)

where the factor 2 emerges from the two identical contractions of the scalars and might
be removed with a different operator normalization or choosing different field flavors. We
aim to study the transcendental properties of n(k), especially whether its perturbation
theory hints at uniform transcendentality when expanded to higher orders in dimensional
regularization d = 3 − 2ϵ.

The one loop correction to the two-point function vanishes identically. In fact, this
extends to all odd loop orders. An odd number of antisymmetric Levi-Civita tensors appears
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at such perturbative orders, however only a single vector is present in the calculation: x or
p. Any contraction of indices with such a vector yields a vanishing result. On the contrary,
at even orders an even number of antisymmetric tensors appears, which evaluate in general
to products of metric tensors.

For our analysis, vanishing of odd loop contributions is a nuisance, since the next non-
trivial perturbative order is four loops. Such a calculation would involve a high computational
complexity and entails the expansion to high orders in dimensional regularization of five-loop
momentum integrals, which is currently unknown in three dimensions.

Partial evidence for uniform transcendentality arises from the calculation of [11], predict-
ing that the maximally color imbalanced component of the two-point function is expressed
to all orders, at ϵ = 0, by the expansion of

n(k)
∣∣∣
maximal powers of N1

= 2N1N2
k sin

(
πN1

k

)
8πN1

(2.6)

producing rational multiples of zetas ζL at even integer L values, at loop L.

3 The calculation

The two-point function can be evaluated straightforwardly in terms of Feynman diagrams.
A key subtlety is that the dimensional reduction scheme [12] is essential for uniform tran-
scendentality [13, 14]. This ensures proper handling of epsilon tensors and γ matrix algebra
in the numerators.

We perform the calculation at two loops, separating the result according to the color
factors

n(k) = 2N1N2

(
n0 +

1
k2

((
N2

1 + N2
2

)
cN2

1
(ϵ) + N1N2cN1N2(ϵ) + c1(ϵ)

))
+O

(
k−4

)
(3.1)

In momentum space, the tree level result is just the bubble integral

n0 = = G(1, 1) (3.2)

where [15]

G(α, β) ≡
eγϵΓ

(
d
2 − α

)
Γ
(

d
2 − β

)
Γ
(
α + β − d

2

)
(4π)3/2Γ(α)Γ(β)Γ(d − α − β)

(3.3)

By this normalization choice, we are discarding unimportant factors e−γϵ(4π)ϵ for each
momentum loop integration, which can be absorbed in the overall factor and in the coupling
constant. We recall that the external momentum scale p2 was set to unity.

After the evaluation of Feynman diagrams, the result is reduced to master integrals. We
used FIRE [16, 17] and LiteRed [18, 19] for the task. This leads to the following result

cN2
1

π2 = −16(2d − 5)(3d − 8)
(d − 3)2 + 16(3d − 8)

d − 3

− 32 − 16 + 16 (3.4a)
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cN1N2

π2 = 32 + 16(3d − 8)(17d3 − 150d2 + 433d +−406)
(d − 4)2(d − 3)(2d − 7)

− 64(11d2 − 64d + 92)
(d − 4)2

+ 32(2d − 5)(3d − 8)(45d4 − 577d3 + 2775d2 − 5936d + 4768)
(d − 4)3(d − 3)2(2d − 7)

− 8(23d2 − 155d + 262)
(d − 4)(2d − 7) − 4(d − 4)

2d − 7 (3.4b)

c1
π2 = −112(d − 3)(3d − 10)(3d − 8)

(d − 4)2(2d − 7) + 768(d − 3)2

(d − 4)2

− 32(2d − 5)(3d − 8)(43d2 − 288d + 480)
(d − 4)3(2d − 7)

+ 40(d − 3)(3d − 10)
(d − 4)(2d − 7) + 4(d − 4)

(2d − 7) (3.4c)

The diagrams above symbolize the respective master integrals. We have factored out a
common π2, for later convenience.

4 Uniform transcendentality

The next step to inspect transcendentality properties consists in expanding master integrals
in dimensional regularization for d = 3 − 2ϵ. The simplest can be expressed in terms of Γ
functions and expanded straightforwardly

= G(1, 1)G(1, 2ϵ)G
(1
2 + ϵ, 1

)
= G(1, 1)2G(1 + 2ϵ, 1)

= G(1, 1)2G

(1
2 + ϵ, 1

)
= G(1, 1)3 (4.1)

The master integral possesses an exact expression in terms of a hypergeometric
function [20]

= e2γϵ

(4π)3 G(1, 1) 2Γ
(
5− 3d

2

)
Γ
(

d

2 − 1
)
Γ(d − 3) (4.2) Γ

(
d
2 − 1

)
(d − 4)Γ

(
3− d

2

)
Γ(2d − 6)

3F2

(
1, 4− d, d − 2
5− d, 3− d

2

∣∣∣∣∣ 1
)
−

π cot
(

3πd
2

)
Γ(d − 2)


Its expansion around three dimensions can be performed with the algorithms of Hyp-
Exp [21, 22] and HPL [23, 24]. However, at a certain order explicit expressions for harmonic
polylogarithms at specific values are not tabled any longer. Hence, extracting analytic

– 4 –



J
H
E
P
1
2
(
2
0
2
4
)
1
8
8

expressions a posteriori, as described momentarily, becomes more practical. An expansion
up to transcendental weight 6, i.e. order ϵ4 can be found in [25]

= 3ζ2
256 +

(21ζ3
128 − 3L1ζ2

128

)
ϵ

+
(

L4
1

32 − 21
128ζ2L2

1 +
21ζ3L1
64 + 3L4

4 + 669ζ4
1024

)
ϵ2

+
(
3L5

1
80 − 9

64ζ2L3
1 +

21
64ζ3L2

1 +
3L4L1

2 − 669ζ4L1
512 + 3L5 +

75ζ2ζ3
64 + 1023ζ5

256

)
ϵ3

+
(
7L6

1
240 + 31

128ζ2L4
1 +

7
32ζ3L3

1 +
3
2L4L2

1 −
2091
512 ζ4L2

1 + 6L5L1 +
333
64 ζ2ζ3L1

+1023ζ5L1
128 − 129ζ2

3
16 + 12L6 +

69L4ζ2
8 + 493773ζ6

16384 − 33
4 ζ−5,−1

)
ϵ4 + O

(
ϵ5
)

(4.3)

The following notation has been used for transcendental numbers in this formula

Ln ≡ Lin
(1
2

)
(4.4)

so in particular L1 = log 2. Multiple zeta values and Euler sums are defined according to

ζ−5,−1 = −0.0299016 . . . (4.5)

To the best of our knowledge, the non-planar master integral lacks a closed expression
and has to be expanded with some suitable method. The problem of propagator master
integrals has been extensively analyzed in literature in four dimensions [26–28]. Here we
apply the dimensional recurrence relations method [3], because the problem of expanding such
master integrals has already been addressed, solved and coded in the heaven-sent package
SummerTime [25] (see also [29]). With this implementation, expanding the integrals at higher
orders in ϵ is fast and precise. After suitably expanding numerically the integrals to some
hundreds of digits, coefficients are reconstructed by Mathematica’s implementations of the
PSLQ and LLL algorithms. For this task, a basis of transcendental numbers is necessary. Up
to the orders we investigated in this work, it seems that Euler sums up to transcendental weight
l+2 suffice for determining the expansions at order ϵl (though it was observed in [25] that this
is not the case for four-loop integrals). Up to order ϵ4, the non-planar master integral reads

= ζ2
16 − 13

64 +
(

ζ2L1
2 − 13L1

32 − 7ζ2
64 + 17ζ3

32 − 9
8

)
ϵ

+
(
−L4

1
4 + 13

8 ζ2L2
1 −

13L2
1

32 + 47ζ2L1
32 + 17ζ3L1

16 − 9L1
4 − 6L4

−1319ζ2
128 − 71ζ3

32 + 19ζ4
2 + 115

16

)
ϵ2
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+
(
−3L5

1
10 − 9L4

1
8 + 4

3ζ2L3
1 −

13L3
1

48 + 209
32 ζ2L2

1 +
17
16ζ3L2

1

−9L2
1

4 − 12L4L1 −
3599ζ2L1

64 − 71ζ3L1
16 + 1277ζ4L1

32 + 115L1
8 − 27L4

−24L5 +
67ζ2
8 − 249ζ2ζ3

64 + 307ζ3
64 + 1519ζ4

256 + 1637ζ5
32 − 24

)
ϵ3

+
(
−7L6

1
30 − 27L5

1
20 − 17

6 ζ2L4
1 −

37L4
1

96 + 263
48 ζ2L3

1 +
17
24ζ3L3

1 −
3L3

1
2

− 12L4L2
1 −

10439
64 ζ2L2

1 −
71
16ζ3L2

1 +
617
8 ζ4L2

1 +
115L2

1
8 − 54L4L1

− 48L5L1 +
161ζ2L1

2 − 1653
32 ζ2ζ3L1 +

307ζ3L1
32 + 13561ζ4L1

128 + 1637ζ5L1
16

− 48L1 −
1933ζ2

3
32 − 6L4 − 108L5 − 96L6 − 93L4ζ2 +

1641ζ2
32 − 999ζ2ζ3

32

+128ζ3 −
618773ζ4
1024 + 1433ζ5

64 + 1689739ζ6
3072 + 66ζ−5,−1 +

235
4

)
ϵ4 + O

(
ϵ5
)

(4.6)

From the definition of the integrals or inspection into their expansion, it is clear that some
simplifications are obtained by dividing by the one-loop bubble integral . In terms
of the two-point functions, this also serves the purpose of factoring the tree level result and
normalizing the loop contributions by that.

Contrary to N = 4 SYM, such a normalization by the tree level result is not necessary
for exposing uniform transcendentality. The tree level contribution is proportional to the
integral G(1, 1), which happens to be uniformly transcendental in d = 3 − 2ϵ dimensions.
Hence, normalizing by this contribution does not alter the transcendentality properties of
the two-point function.

Plugging the integral expansions into (3.4) produces the following normalized two-loop
corrections associated to different color structures
cN2

1

n0
= −ζ2 + ϵ (19ζ3 − 24ζ2L1) + ϵ2

(
−30ζ4 − 48ζ2L2

1 + 4L4
1 + 96L4

)
+ ϵ3

(
41ζ2ζ3

3 + 975ζ5
2 − 32ζ2L3

1 − 1002ζ4L1 −
16L5

1
5 + 384L5

)

+ ϵ4
(
−1056ζ−5,−1 −

2675ζ2
3

3 − 7075ζ6
16 − 28ζ2L4

1 − 1356ζ4L2
1 + 568ζ2ζ3L1 + 864ζ2L4

+ 32L6
1

15 + 1536L6

)
+ O

(
ϵ5
)

(4.7)

cN1N2

n0
= ϵ (36ζ2L1−55ζ3)+ϵ2

(
72ζ2L2

1−
463ζ4
2

)
+ϵ3

(
139ζ2ζ3−2612ζ5+96ζ2L3

1+564ζ2
2L1

)
+ ϵ4

(
11132ζ2

3
3 − 369337ζ6

24 +128ζ2L4
1 +2340ζ4L2

1 +264ζ2ζ3L1 +768ζ2L4

)
+O

(
ϵ5
)

(4.8)
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c1
n0

= 2ζ2 + ϵ (17ζ3 + 12ζ2L1) + ϵ2
(583ζ4

2 + 24ζ2L2
1 − 8L4

1 − 192L4

)
+ ϵ3

(
−499ζ2ζ3

3 + 1637ζ5 − 32ζ2L3
1 + 594ζ4L1 +

32L5
1

5 − 768L5

)

+ ϵ4
(
2112ζ−5,−1 −

5782ζ2
3

3 + 195281ζ6
12 − 72ζ2L4

1 + 372ζ4L2
1 − 1400ζ2ζ3L1 − 2496ζ2L4

− 64L6
1

15 − 3072L6

)
+ O

(
ϵ5
)

(4.9)

The result is manifestly uniformly transcendental, up to the order to which it was expanded.
A few more orders are indirectly evaluated below, where we leverage uniform transcendentality
to streamline the expansion of the non-trivial master integrals.

The empirical evidence exposed above suggests that, analogously to N = 4 SYM
in four dimensions, the two-point function of protected, dimension-1 operators in ABJM
exhibits uniform transcendentality. Unfortunately, the peculiarities of the ABJM perturbative
expansion limit the scope of this evidence to only one non-trivial order, two loops. What is
more with respect to N = 4 SYM is that uniform transcendentality holds across the various
color structures, providing different constraints on the transcendental structure of the master
integrals. Only two are independent though, since

2cN2
1
+ cN1N2 + c1 = 0 (4.10)

to all orders in ϵ, as ascertained at the level of master integrals (3.4). The choice N1 =
N2 = 2 yields the N = 8 BLG model [30, 31] which consequently also exhibits uniform
transcendentality.

5 Constraints on the transcendentality of master integrals

In this section we discuss the consequences of the uniform transcendentality conjecture
at the level of the master integrals. Since there are two independent combinations which
exhibit the property, we can infer uniformly transcendental combinations involving the two
non-trivial master integrals separately.

In the coefficient cN2
1

(3.4a) we can observe that and are independently
uniformly transcendental, since they can be expressed in terms of Γ functions of uniform
transcendental expansions. The other master integrals are made uniformly transcendental by
the rescalings (1− 4ϵ) (1− 6ϵ) and (1− 6ϵ) . Precisely the combination

4(6ϵ − 1)
ϵ2

(
(1− 4ϵ) + 2ϵ

)
(5.1)

appears in (3.4a), upon setting d = 3−2ϵ. Therefore the remaining integral in (3.4a)
has to be uniformly transcendental too, which is in fact the case. An explicit expansion is
provided in (4.3) up to order ϵ4. From a numerical expansion with SummerTime, we can
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reconstruct a few more expansion coefficients in terms of rational combinations of uniformly
transcendental bases. The full bases of transcendental Euler sums with only an upper limit
on transcendentality possess more elements. Hence, using the former demands less precision
in the numerical evaluations and allow for much faster reconstructions. By taking the ratio
with the one-loop bubble integral

V̄ (ϵ) ≡
/

(5.2)

additional simplifications occur as various transcendentals constructed thanks to products of
log 2 dropping out of the expansion. We state a couple further terms, up to transcendental
weight 8 or ϵ6, to demonstrate this fact and corroborate the uniform transcendentality property

V̄ (ϵ) = 3ζ2
32 + ϵ

(21ζ3
16 − 3ζ2L1

8

)
+ ϵ2

(
297ζ4
64 − 3

4ζ2L2
1 +

L4
1
4 + 6L4

)

+ ϵ3
(
49ζ2ζ3

8 + 1023ζ5
32 + ζ2L3

1 −
297ζ4L1

16 − L5
1
5 + 24L5

)
+ ϵ4

(
−66ζ−5,−1 −

1025ζ2
3

16

+ 111783ζ6
512 + 5

4ζ2L4
1 +

27
8 ζ4L2

1 +
91
4 ζ2ζ3L1 + 54ζ2L4 +

2L6
1

15 + 96L6

)

+ ϵ5
(
−960

7 ζ−5,1,1 +
888
7 ζ5,−1,−1 +

960
7 L1ζ−5,−1 +

283419ζ3ζ4
448 + 105729ζ2ζ5

160 + 375ζ7
2

− ζ2L5
1 −

56
3 ζ3L4

1 −
9
2ζ4L3

1 +
133
2 ζ2ζ3L2

1 −
1023
4 ζ5L2

1 −
1200
7 ζ2

3L1 −
585345ζ6L1

896

+ 216ζ2L5 − 448ζ3L4 −
8L7

1
105 + 384L7

)

+ ϵ6
(
25440
7 ζ−7,−1 −

15534
7 ζ2ζ−5,−1 +

158559ζ5,3
560 − 3552

7 ζ−5,−1,−1,−1 −
3840
7 ζ−5,−1,1,1

+ 1776
7 L2

1ζ−5,−1 −
166843
168 ζ2ζ2

3 − 648799ζ3ζ5
560 + 199150479ζ8

17920 + 2
3ζ2L6

1 +
608
105ζ3L5

1

+ 2747
16 ζ4L4

1 +
58
21ζ2ζ3L3

1 +
999
14 ζ2

3L2
1 −

490401
448 ζ6L2

1 −
4869
56 ζ3ζ4L1 −

134349
140 ζ2ζ5L1

+ 864ζ2L6 −
4864ζ3L5

7 + 8025ζ4L4
2 + 4L8

1
105 + 1536L8

)
+O

(
ϵ7
)

(5.3)

Two additional terms, up transcendental weight 10, are displayed explicitly in the ap-
pendix, since they start becoming bulky. Different choices of basis elements for Euler sums
are possible.
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From relation (3.4c) we can infer that the lower transcendental part of the non-planar
master integral is exactly provided, order-by-order, by the negative of the lower transcendental
terms of all other contributions

∣∣∣∣
lower transc

=
(8(1− 4ϵ)(1− 6ϵ)

(
172ϵ2 + 60ϵ + 3

)
(1 + 2ϵ)4 +

56(1− 6ϵ)(1 + 6ϵ)ϵ
(1 + 2ϵ)3 − 768(1 + 4ϵ)ϵ2

(1 + 2ϵ)3

− 20(1 + 6ϵ)ϵ
(1 + 2ϵ)2

∣∣∣∣
lower transc

(5.4)

Surprisingly, the terms on the right-hand-side of this equation turn out to provide exactly
the lower transcendental part of the non-planar integral

∣∣∣∣
lower transc

= 8(1− 4ϵ)(1− 6ϵ)
(
172ϵ2 + 60ϵ + 3

)
(1 + 2ϵ)4 + (5.5)

56(1− 6ϵ)(1 + 6ϵ)ϵ
(1 + 2ϵ)3 − 768(1 + 4ϵ)ϵ2

(1 + 2ϵ)3 − 20(1 + 6ϵ)ϵ
(1 + 2ϵ)2

This is an empirical observation and we lack an explanation for it. As a result, the expansion
of c1 in (3.4c) coincides with the maximally transcendental part of the non-planar master
integral. Conversely, the expression

U(ϵ) ≡ − 8(1− 4ϵ)(1− 6ϵ)
(
172ϵ2 + 60ϵ + 3

)
(1 + 2ϵ)4 (5.6)

− 56(1− 6ϵ)(1 + 6ϵ)ϵ
(1 + 2ϵ)3 + 768(1 + 4ϵ)ϵ2

(1 + 2ϵ)3 + 20(1 + 6ϵ)ϵ
(1 + 2ϵ)2

is, conjecturally, uniformly transcendental to all orders in ϵ.

We leverage this conjecture to facilitate the analytic extraction of its coefficients. A
numeric evaluation of (5.6) can be fitted to numbers belonging to a uniform transcendental
basis. The working hypothesis for this integral is that Euler sums are sufficient for the task.
A few simplifications occur after normalizing by the one-loop bubble integral

Ū(ϵ) ≡ U(ϵ)
/

(5.7)
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The expansion of such a combination reads, up to transcendental weight 8

Ū(ϵ) = 2ζ2 + ϵ (17ζ3 + 12ζ2L1) + ϵ2
(583ζ4

2 + 24ζ2L2
1 − 8L4

1 − 192L4

)
+ ϵ3

(
−499ζ2ζ3

3 + 1637ζ5 − 32ζ2L3
1 + 594ζ4L1 +

32L5
1

5 − 768L5

)
+ ϵ4

(
2112ζ−5,−1

− 5782ζ2
3

3 + 195281ζ6
12 −72ζ2L4

1+372ζ4L2
1−1400ζ2ζ3L1−2496ζ2L4−

64L6
1

15 −3072L6

)

+ ϵ5
(
73728
7 ζ−5,1,1 +

14592
7 ζ5,−1,−1 −

73728
7 L1ζ−5,−1 −

3648733ζ3ζ4
84 + 69111ζ2ζ5

5

+57908ζ7−
1376
5 ζ2L5

1+
3136
3 ζ3L4

1+3984ζ4L3
1−8848ζ2ζ3L2

1+8184ζ5L2
1+

92160
7 ζ2

3L1

− 9216ζ2L4L1 +
883713ζ6L1

28 − 16128ζ2L5 + 25088ζ3L4 +
256L7

1
105 − 12288L7

)

+ ϵ6
(
−814080

7 ζ−7,−1 +
394944

7 ζ2ζ−5,−1 +
26946ζ5,3

35 + 113664
7 ζ−5,−1,−1,−1

+ 122880
7 ζ−5,−1,1,1 −

56832
7 L2

1ζ−5,−1 +
706528
63 ζ2ζ2

3 − 17904254ζ3ζ5
105 + 2980042927ζ8

5040
− 704ζ2L6

1 +
18176
105 ζ3L5

1 − 1510ζ4L4
1 −

114752
21 ζ2ζ3L3

1 −
15984
7 ζ2

3L2
1 − 18432ζ2L4L2

1

+ 751473
14 ζ6L2

1 − 12288ζ2L5L1 −
241596

7 ζ3ζ4L1 +
2064312

35 ζ2ζ5L1 − 39936ζ2L6

− 145408ζ3L5
7 − 171024ζ4L4 +

4352L8
1

105 +2048L4L4
1 +24576L2

4 − 49152L8

)
+O

(
ϵ7
)

(5.8)

and two additional orders are presented in the appendix. The fact that these expansions
can be determined in terms of uniformly transcendental numbers is a corroboration of the
uniform transcendentality conjecture.

From a practical perspective, working with uniformly transcendental objects offers
substantial advantages in the reconstruction. For instance, fixing an analytic form for U(ϵ) at
order ϵ5 and ϵ6 (transcendental weights 7 and 8) can be performed with basis sizes of 21 and
34 independent Euler sums. The reconstruction achieves stability around order 180 and 380
digits, respectively. Full bases of all independent Euler sums up to transcendental weights
7 and 8 have sizes 54 and 88. In those cases, an effective coefficient reconstruction of the
non-planar master integral would require order 570 and 1250 digits, respectively.

Since the number of linearly independent basis elements for Euler sums at fixed tran-
scendental weight n grows according to the Fibonacci sequence Fn+1 [32], the number of
elements in a full basis considering transcendentality ≤ l is

l∑
n=0

Fn+1 = 1√
5

((
−
(
2 +

√
5
)

ϕ
)−l

+
(
2 +

√
5
)

ϕl
)
− 1

where ϕ is the golden ratio. The full basis is asymptotically ϕ2 times larger than the uniformly
transcendental one, with a relative difference asymptoting ϕ.
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6 Comparison to four dimensions

An analogous observation of uniform transcendentality for two-point functions of lowest
dimensions protected operators in N = 4 SYM was put forward in [2]. Conjecturing it holds
to all orders in ϵ, it implies that the following combination of three-loop master integrals
is uniformly transcendental when expanded at d = 4 − 2ϵ

1
G(1, 1)

(
+ 16(d − 3)2

(d − 4)2

+ 16(2d − 5)(3d − 8)(d(9d − 65) + 118)
(d − 4)4

+ 128(2d − 7)(d − 3)2

(d − 4)3 − (48(3d − 10)(3d − 8)(d − 3)
(d − 4)3

+ (12(3d − 10)(d − 3)
(d − 4)2

)
(6.1)

This observation can then be used to facilitate reconstructing the expansion coefficients of
the non-planar master from numerics at high order in ϵ, if needed.

At four loops the question of uniformly transcendental master integrals is more interesting.
The uniform transcendentality conjecture for two-point functions of dimension-2 operators
only provides one constraint, over order twenty master integrals, which is not sufficient for
extracting useful information. In case other independent constraints can be derived from
other observables, then the situation could improve.

7 Conclusions

In this work we conjecture that the dimensional regularization expansion of the two-point
function of supersymmetric dimension-1 operators in ABJM exhibits uniform transcendentality.
This is an empirical perturbative statement verified only at two-loop order and up to a certain
fixed power of the regulator ϵ, that is ϵ8. The extension to further perturbative orders, and to
the whole ϵ expansion can only be conjectured. As additional support, the same phenomenon
seems to occur in four dimensions for N = 4 SYM theory [2]. In that context, a few more
data points are accessible, since it is possible to extract non-trivial results at odd loop orders,
where the ABJM analogues vanish trivially.

While in N = 4 SYM no transcendentals outside the MZV realm pop up at three-loop
perturbative order (four loop momentum integrals), the uniform transcendentality conjecture
in ABJM involves Euler sums already at two-loop order. This causes a more demanding
extraction of analytic coefficients from numerics, since the basis of numbers whose coefficients
are unknown is larger. This in turn requires additional precision in the numerical evaluation.
We have leveraged the uniform transcendentality conjecture to construct a combination of
master integrals of uniform transcendental weight, whose analytic determination is then more
straightforward. We have estimated the relative advantage of a uniformly transcendental
basis of Euler sums over the complete one, just because its asymptotics are governed by the
golden ratio, henceforth aesthetically satisfactory.
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If a similar uniform transcendentality statement could be put forward for some two-point
correlator in ABJM requiring four-loop master integrals in momentum space, it would likely
involve transcendentals beyond Euler sums, whose appearance was diagnosed in [25]. This
would constitute a natural development of the present work.

In [2] a relation was observed between the two-point function of protected operators and
their three-point function in the limit of a soft external momentum. It would be interesting
to explore whether a similar relation holds for three-point functions in ABJM. This might
shed additional light on conflicting and not completely satisfactory results in literature for
such three-point functions [9, 10].
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A Expansions up to transcendental weight 10

A.1 Planar non-trivial master integral

At transcendental weight 9 V̄ (ϵ) reads

V̄ (ϵ)(7) = 285092
91 ζ3ζ−5,−1 − 528ζ−7,1,1 −

290088
91 ζ2ζ−5,1,1 −

10992
13 ζ2ζ5,−1,−1

− 344112
91 ζ7,−1,−1 +

1824
91 ζ−5,−1,−1,−1,1 +

94176
91 ζ−5,−1,−1,1,1

− 31392
91 ζ−5,−1,1,−1,−1 −

8256
7 ζ−5,−1,1,1,1 +

94480
91 L3

1ζ−5,−1 +
15696
91 L2

1ζ−5,1,1

+ 78480
91 L2

1ζ5,−1,−1 +
1319424

91 L1ζ−7,−1 +
383352
91 ζ2L1ζ−5,−1 +

450279
280 L1ζ5,3

− 188352
91 L1ζ−5,−1,−1,−1 +

94176
91 L1ζ−5,−1,1,1 +

7078265ζ3
3

4368 − 227534193ζ4ζ5
58240

+ 12805099ζ3ζ6
2912 + 9236757ζ2ζ7

2912 + 1156507903ζ9
11648 + 9944ζ2L7

1
1365 + 3313

819 ζ3L6
1

− 82595
364 ζ4L5

1 −
93097
273 ζ2ζ3L4

1 −
362133
455 ζ5L4

1 +
50607
91 ζ2

3L3
1 +

10464
91 ζ2L4L3

1

− 5798693ζ6L3
1

1456 − 31392
91 ζ2L5L2

1 +
7848
13 ζ3L4L2

1 −
92811
52 ζ3ζ4L2

1

− 9117039ζ2ζ5L2
1

1820 + 412767
364 ζ7L2

1 −
6308713ζ2ζ2

3L1
1092 + 141264

91 ζ3L5L1

− 19620
7 ζ4L4L1 +

2023293
364 ζ3ζ5L1 −

3070273579ζ8L1
58240 + 3456ζ2L7

− 535456ζ3L6
91 − 832920

91 ζ2ζ3L4 +
378438ζ4L5

91 − 198936ζ5L4
65 − 6094L9

1
12285

− 5232
455 L4L5

1 +
5232
91 L5L4

1 +
125568L4L5

91 + 6144L9 (A.1)
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and at transcendental weight 10

V̄ (ϵ)(8) = −9535368644L10
1

2204604675 + 10136039869ζ2L8
1

146973645 − 67459049044ζ3L7
1

1028815515

− 5155105472L4L6
1

48991215 − 137185298171ζ4L6
1

97982430 + 718840064L5L5
1

1399749

− 657074324446ζ2ζ3L5
1

342938505 + 2154785922977ζ5L5
1

489912150 + 366988482535ζ2
3L4

1
117578916

− 133506303839ζ6L4
1

29861312 + 17736241944ζ−5,−1L4
1

3266081 − 521024256L5ζ2L3
1

171899

+ 371882464L4ζ3L3
1

466583 − 29277789236ζ3ζ4L3
1

22862567 − 1295291888057ζ2ζ5L3
1

16330405

+ 307275852353ζ7L3
1

3266081 + 2831273728ζ−5,1,1L3
1

3266081 + 7514040064ζ5,−1,−1L3
1

3266081

− 3594946629991ζ2ζ2
3L2

1
68587701 + 5111506944L5ζ3L2

1
466583 − 6635190808L4ζ4L2

1
251237

+ 1426412816737ζ3ζ5L2
1

6532162 − 16459147570365ζ8L2
1

77010752 + 57941015760ζ−7,−1L2
1

3266081

+ 1120484738784ζ2ζ−5,−1L2
1

22862567 + 1968005646ζ5,3L2
1

251237 − 32928721920ζ−5,−1,−1,−1L2
1

3266081

+ 10156179664L4ζ2L4
1

9798243 + 1560336768ζ−5,−1,1,1L2
1

466583 + 1156584567818ζ3
3L1

68587701

+ 41240843776L4L5L1
3266081 − 36664186752L6ζ3L1

3266081 − 215749225920L4ζ2ζ3L1
3266081

− 113959525872L5ζ4L1
3266081 + 67433321120L4ζ5L1

466583 − 180965609690483ζ4ζ5L1
457251340

− 199201020799687ζ3ζ6L1
1463204288 + 80779677613ζ2ζ7L1

6532162 + 132095610426391ζ9L1
313543776

− 872653386616ζ3ζ−5,−1L1
22862567 + 2288880480ζ−7,1,1L1

35891 − 110366345088ζ2ζ−5,1,1L1
3266081

− 100802498752ζ2ζ5,−1,−1L1
3266081 − 13974354528ζ7,−1,−1L1

3266081 + 2411892096ζ−5,−1,−1,−1,1L1
466583

+ 16464360960ζ−5,−1,−1,1,1L1
3266081 + 2923810688ζ−5,−1,1,−1,−1L1

3266081

− 2575785984ζ−5,−1,1,1,1L1
251237 + 189576960L2

5
251237 + 1994713814L4ζ2

3
753711 − 4353274155729ζ2

5
281385440

+ 24576L10 −
47394240L2

4ζ2
251237 + 13824L8ζ2 −

285952L7ζ3
7 − 2219497680L5ζ2ζ3

1758659

− 3887701666323ζ2
3ζ4

112554176 + 9353977032L6ζ4
251237 + 46679978124L5ζ5

1256185

− 7927859205619ζ2ζ3ζ5
140692720 + 467151029397L4ζ6

2009896 − 452601269ζ3ζ7
502474

+ 36056747508643599ζ10
72034672640 + 95686736352ζ−9,−1

251237 − 96851640888ζ2ζ−7,−1
1758659

− 362346048L4ζ−5,−1
35891 − 556597338369ζ4ζ−5,−1

3517318 + 99612869469ζ2ζ5,3
28138544

+ 698630689767ζ7,3
112554176 − 23010936400ζ3ζ−5,1,1

1758659 + 136155400ζ3ζ5,−1,−1
1758659
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− 4631578080ζ−7,−1,−1,−1
251237 − 7269041952ζ−7,−1,1,1

251237 − 6435234432ζ2ζ−5,−1,−1,−1
1758659

− 17006670432ζ2ζ−5,−1,1,1
1758659 − 1018001664ζ−5,1,−1,−1,−1,−1

251237

− 94788480ζ−5,1,1,−1,1,−1
251237 + 798079872ζ−5,1,1,1,−1,−1

251237 − 852615936ζ−5,1,1,1,1,1
251237 (A.2)

The rational coefficients experience a suspicious jump upwards in complexity starting at
transcendental weight 10, but this is due to the presence of a large ubiquitous prime number,
1889. A similar phenomenon occurs for MZV’s at weight 12, due to the large prime 691
in the numerator of the Bernoulli number B12. The stability of the reconstruction of the
coefficients has been tested across several hundreds of precision in the numerical evaluation
of the integrals, beyond its onset.

A.2 Non-planar uniformly transcendental combination of master integrals

The expansion coefficients of Ū(ϵ) up to transcendental weight 10 read

Ū(ϵ)(7)ll = 11255680
91 ζ3ζ−5,−1 − 62976ζ−7,1,1 +

32172288
91 ζ2ζ−5,1,1 −

4875776
91 ζ2ζ5,−1,−1

− 12255744
91 ζ7,−1,−1 +

1747968
91 ζ−5,−1,−1,−1,1 +

3265536
91 ζ−5,−1,−1,1,1

+1893376
91 ζ−5,−1,1,−1,−1+

608256
7 ζ−5,−1,1,1,1+

5047808
91 L3

1ζ−5,−1−
946688
91 L2

1ζ−5,1,1

− 260608
91 L2

1ζ5,−1,−1 +
49815552

91 L1ζ−7,−1 −
25587456

91 ζ2L1ζ−5,−1 +
1951668

35 L1ζ5,3

− 6531072
91 L1ζ−5,−1,−1,−1 +

3265536
91 L1ζ−5,−1,1,1 +

87515314ζ3
3

819 − 1479701267ζ4ζ5
1820

− 40907276245ζ3ζ6
13104 − 3366953ζ2ζ7

91 + 23121935561ζ9
3276 + 233216ζ2L7

1
4095 − 8295712ζ3L6

1
4095

− 6506952
455 ζ4L5

1+
3811552

91 ζ2ζ3L4
1 −

43629632ζ5L4
1

1365 − 29920
91 ζ2

3L3
1 −

4129792
273 ζ2L4L3

1

− 4953750
91 ζ6L3

1 −
9288704

91 ζ2L5L2
1 −

473344
13 ζ3L4L2

1 −
11126216

13 ζ3ζ4L2
1

+ 113917112
455 ζ2ζ5L2

1 +
39982056

91 ζ7L2
1 +

102468008
273 ζ2ζ2

3L1 − 147456ζ2L6L1

+ 4898304
91 ζ3L5L1 −

4547456
7 ζ4L4L1 +

6615288
91 ζ3ζ5L1 −

587857077ζ8L1
1820

−258048ζ2L7−
3939328ζ3L6

91 +67331840
91 ζ2ζ3L4−

135553728ζ4L5
91 − 38468608ζ5L4

65

− 476992L9
1

12285 − 1289728L4L5
1

1365 + 1289728
273 L5L4

1 +
10317824L4L5

91 − 196608L9

(A.3)

and

Ū(ϵ)(8) = 193583934848L10
1

11023023375 − 115326602912ζ2L8
1

734868225 − 988689478016ζ3L7
1

5144077575

+ 206442604544L4L6
1

244956075 − 4323741943184ζ4L6
1

244956075 + 189258760192L5L5
1

34993725
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+ 99634322068672ζ2ζ3L5
1

1714692525 − 31516238658832ζ5L5
1

244956075 − 1823443023928ζ2
3L4

1
146973645

+ 32768L6L4
1 −

154731350528L4ζ2L4
1

48991215 − 1879223542881ζ6L4
1

4665830

+ 77932463360ζ−5,−1L4
1

3266081 − 84441751552L5ζ2L3
1

859495 + 7659324416L4ζ3L3
1

2332915

− 124113413905792ζ3ζ4L3
1

114312835 + 13448253034912ζ2ζ5L3
1

16330405 − 9102340863776ζ7L3
1

16330405

− 139551801344ζ−5,1,1L3
1

16330405 + 338954846208ζ5,−1,−1L3
1

16330405 − 49152
5 L2

4L2
1

+ 283482885319456ζ2ζ2
3L2

1
342938505 − 294912L6ζ2L2

1 +
127585738752L5ζ3L2

1
2332915

− 979150630144L4ζ4L2
1

1256185 − 35190890820656ζ3ζ5L2
1

16330405 + 14236192309081ζ8L2
1

12032930

+ 17875425099264ζ−7,−1L2
1

16330405 − 51822569782272ζ2ζ−5,−1L2
1

114312835

+ 13597543296ζ5,3L2
1

251237 − 1244595191808ζ−5,−1,−1,−1L2
1

16330405

+ 131915132928ζ−5,−1,1,1L2
1

2332915 − 84491033992672ζ3
3L1

342938505

− 1116426125312L4L5L1
16330405 − 196608L7ζ2L1 +

651122749440L6ζ3L1
3266081

+ 23571268601856L4ζ2ζ3L1
16330405 − 23804318298624L5ζ4L1

16330405

− 6115751323648L4ζ5L1
2332915 + 687025452705776ζ4ζ5L1

114312835

− 482730659185321ζ3ζ6L1
228625670 + 3284687600144ζ2ζ7L1

16330405

+ 291569715153149ζ9L1
48991215 + 22123700403968ζ3ζ−5,−1L1

22862567

− 194572778496ζ−7,1,1L1
179455 + 9141735161856ζ2ζ−5,1,1L1

16330405

+ 5249247401984ζ2ζ5,−1,−1L1
16330405 − 9735062332416ζ7,−1,−1L1

16330405

− 98529325056ζ−5,−1,−1,−1,1L1
2332915 + 461763182592ζ−5,−1,−1,1,1L1

16330405

− 37101842432ζ−5,−1,1,−1,−1L1
3266081 + 227378528256ζ−5,−1,1,1,1L1

1256185

− 622331584512L2
5

1256185 − 228940688320L4ζ2
3

753711 − 24032755897757ζ2
5

8793295

+ 786432L4L6 − 786432L10 +
334640510976L2

4ζ2
1256185 − 638976L8ζ2

+ 26484736L7ζ3
35 + 1883485807104L5ζ2ζ3

8793295 − 29574019653139ζ2
3ζ4

158279310

− 2364489123072L6ζ4
1256185 − 1402421188992L5ζ5

1256185 − 9041030424546ζ2ζ3ζ5
8793295

− 9533825728788L4ζ6
1256185 − 7749622338496ζ3ζ7

3768555 + 513309731999841631ζ10
28138544000
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− 3294308047872ζ−9,−1
251237 + 31484349153024ζ2ζ−7,−1

8793295 − 85147736064L4ζ−5,−1
179455

+ 23131188644304ζ4ζ−5,−1
8793295 + 2882611601582ζ2ζ5,3

43966475 − 899943270451ζ7,3
17586590

+ 1295698469376ζ3ζ−5,1,1
8793295 − 6327273143552ζ3ζ5,−1,−1

8793295

+ 854235614208ζ−7,−1,−1,−1
1256185 + 1070657270784ζ−7,−1,1,1

1256185

− 377390456832ζ2ζ−5,−1,−1,−1
8793295 + 621206486016ζ2ζ−5,−1,1,1

8793295

+ 35739672576ζ−5,1,−1,−1,−1,−1
1256185 + 49152

5 ζ−5,1,−1,1,−1,−1 −
98304
5 ζ−5,1,1,−1,−1,1

+ 39492169728ζ−5,1,1,−1,1,−1
1256185 − 45016952832ζ−5,1,1,1,−1,−1

1256185

+ 9277956096ζ−5,1,1,1,1,1
1256185 (A.4)
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