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ABSTRACT: An enhanced version of the conformal BMS3 algebra is presented. It is shown
to emerge from the asymptotic structure of an extension of conformal gravity in 3D by
Pope and Townsend that consistently accommodates an additional spin-2 field, once it
is endowed with a suitable set of boundary conditions. The canonical generators of the
asymptotic symmetries then span a precise nonlinear W 392211 1) algebra, whose central
extensions and coefficients of the nonlinear terms are completely determined by the central
charge of the Virasoro subalgebra. The wedge algebra corresponds to the conformal group
in four dimensions SO(4, 2) and therefore, enhanced conformal BMS3 can also be regarded
as an infinite-dimensional nonlinear extension of the AdSs algebra with nontrivial central
extensions. It is worth mentioning that our boundary conditions might be considered as
a starting point in order to comnsistently incorporate either a finite or an infinite number
of conformal higher spin fields.
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1 Introduction

Finding a bona fide conformal extension of the BMS algebra appears to be a hard nut to
crack (see e.g. [1-5]). Nevertheless in three spacetime dimensions the task can be successfully
achieved, provided that an infinite number of superdilatations and superspecial conformal
transformations are incorporated within a nonlinear algebra [6]. Specifically, the commutator
of supertranslations with superspecial conformal transformations acquires quadratic and cubic
terms made of superrotations and superdilatations. The conformal BMS3 algebra has been
shown to emerge in different physical setups, as it is the case of the asymptotic symmetry
algebra of conformal gravity in 3D [6], as well as from the free field realization of the BMS3
Ising model in 2D [7]. Further related results can be found in [8, 9].

The conformal BMS3 algebra seems to be very rigid, since the central extensions and the
coefficients of the nonlinear terms become entirely determined by the central charge of the
Virasoro subalgebra. Indeed, the conditions obtained from the Jacobi identity turn out to be
very stringent, which suggests that the algebra is unique. In this sense, since the conformal
BMSj3 algebra looks undeformable, one may wonder whether it might be enhanced in some
appropriate way. As a strategy to achieve this task we propose exploring the asymptotic
structure of a suitable extension of conformal gravity in 3D [10, 11]. A nice and simple theory
enjoying the sought features was proposed long ago by Pope and Townsend [12] with the
aim of further enlarging it in order to describe an infinite tower of conformal higher spin
fields in 3D, along the lines of [13]. More recently, conformal gravity was shown to admit
a different extension that accommodates a large class of theories with a finite number of
conformal higher spin fields [14].!

The theory proposed in [12] describes a non-gauged spin-2 field consistently coupled
to conformal gravity, and it can also be formulated in terms of a Chern-Simons action for
so(4,2), after a suitable gauge choice akin to that of Horne and Witten for the case of
pure conformal gravity [11].

In the next section we show that the searched-for enhancement of the conformal BMS3
algebra naturally emerges from the asymptotic structure of the extension of conformal gravity

aforementioned.

! Additional interesting results concerning conformal higher spin fields in 3D can be found in e.g., [15-21].



2 Asymptotic structure of extended conformal gravity in 3D

Following Pope and Townsend [12] the three-dimensional conformal algebra so(3,2), spanned
by {Ja, Pa, Ko, D} with a = 0,1,2, is enhanced to that of so(4,2) by enlarging the set
of generators to include {U,,U,V}. This is also isomorphic to the algebra of depth-two
conformal gravity in Grigoriev et al. [14].

For our purposes, it is convenient to arrange the generators in a different way. The
generators of the so(2,1) ~ sl(2,R) subalgebra that commutes with the Lorentz subalgebra
(spanned by J,) are given by T! = {U,V,D} with I = 0,1,2, so that the remaining
generators P! = {P,, K,,U,} also behave like vectors of sl(2,R). The full so(4,2) algebra
then explicitly reads
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where both 7, and 775 stand for the flat Minkowski metric in 3D. It is useful to express
717 in light cone coordinates (7°' = 719 = 722 = 1) so that Poincaré translations and
special conformal transformations correspond to P, = PY and K, = P}, respectively; while
dilations do for D = T2

We choose the normalization of the Cartan-Killing metric so that it reads
(Jadb) = Tab ; <P;P5]> = 27" (T/Ty) =715, (2.2)

and hence, the extension of conformal gravity in 3D can be expressed in terms of a Chern-
Simons action
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for a gauge field given by
A=wJ, + E¢P! + MyTT (2.4)

where e* = Ef and w® stand for the dreibein and the dualized spin connection, while s* = E¥
corresponds to the one-form associated to the spin-2 gauge field [14].2

2.1 Boundary conditions and enhanced conformal BMSg algebra

Following the lines of [22], a gauge choice of the form A = g~ 'ag+g~'dg, with a suitable group

element g = g (r), allows to completely gauge away the radial dependence of the asymptotic

form of the connection, so that the remaining analysis can be readily performed in terms of the

auxiliary gauge field a = a;dt + a,dy that depends only on time and the angular coordinate.
We then propose the following fall-off of the gauge field

T

2
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>This field was initially identified as a spin-2 non-gauge field [12].



where A(z) = T[JA(I2J), with
1
A =7 (MM =M M) (2.6)
and the dynamical fields J, P;r, M depend only on t, .

The asymptotic behavior is preserved under gauge transformations da = dS2 + [a, ],
with a Lie-algebra-valued parameter given by
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depending on chiral functions of t, o fulfilling ¢ = ¢/, {; = ¢}, A\ = X;. Note that anti-chiral
functions would be obtained if the asymptotic behavior of the gauge field in (2.5) were chosen
as a one-form along dyp — dt (instead of dy + dt).
The transformation law of the dynamical fields is then given by
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with ]Xé]) and /1{3;]) being symmetric and antisymmetric in I, J, respectively, and defined as

~ 27
1J 1J 1J
A(2) = —? (A(Q)T + 6A(2)> y
Al = —4% [2 (j - 4]:/\(2)) KMk + MUM’J]} : (2.10)

The generators of the asymptotic symmetries can then be straightforwardly obtained following
different approaches, as in [23, 24| (see also e.g., [25-27]), and they are given by

Qle. (1, A\] = —/ (7 + GP" — AMY) dg, (2.11)

so that their algebra can be extracted from their Dirac brackets; or in a more direct way,
by virtue of d,, Q [2] = {Q [n2], Q [m]}, and the transformation law of the dynamical fields
in (2.9).



The algebra of the asymptotic symmetry generators is then found to be described by
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Expanding in Fourier modes according to X = % > Xme™? the algebra reads
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where the zero mode of J,, has been shifted as Jy — Jy— 7=, and the nonlinear terms given by
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possess (anomalous) conformal weight 2 and 3, respectively. Indeed, the conformal weight of
the generators Jp,, P/, is 2, while that of the currents MZ is clearly 1.

The wedge algebra is then given by that of the original gauge group SO(4,2) in (2.1),
being recovered once the nonlinear terms are dropped and the modes are restricted according
to |m| < s, where s stands for the conformal weight of the generators, followed by a simple
change of basis.

Note that since the Lorentz subalgebra is non-principally embedded within the wedge
algebra, according to the conformal weight of the generators, the enhanced conformal BMS5
algebra (2.13) can be regarded as a Wip9291,1,1) algebra (see e.g. [28, 29]).

It is also worth highlighting that the Virasoro central charge gives support to the nonlinear
terms, and therefore, the enhanced conformal BMS3 algebra turns out to be well-defined



provided the central charge does not vanish. Nonetheless, for the quantum algebra this is
not necessarily the case because the central extensions and the coefficient in front of the
nonlinear terms generically acquire corrections.

3 Ending remarks

The enhanced conformal BMS3 algebra (2.13) inherits the “rigidity” of its non enhanced
version in [6], since all of the central extensions and the coefficients of the nonlinear terms also
become entirely fixed in terms of the central charge of the Virasoro subalgebra, determined
by the Chern-Simons level k. This can be traced back by the fact that the extension of the
conformal algebra so(4,2) is semisimple, so that it possesses a unique invariant bilinear form
given by the Cartan-Killing metric that can be normalized as in (2.2).

It must be stressed that supertranslations no longer commute with themselves in the
enhanced version of the conformal BMS3 algebra, and this is also the case for the superspecial
conformal transformations. Indeed, from the corresponding commutator in (2.13), one can
read that

i{Pms Pay =i {Ph,Ph} = =7 (m—n )2 M M (3.1)

i Ko, Ko} = i {P, Ph} = =5 (m —n ZMMW (3.2)

and hence, commutativity is lost due to nonlinear contributions of the current generators
even at the classical level, being clearly persistent in the quantum realization. This is in
stark contrast with what occurs for the (non enhanced) conformal BMS3 algebra in [6],
since commutativity holds in that case. Indeed, BMS3 is a subalgebra of its conformal
extension; nevertheless, it is not a subalgebra of its enhanced conformal extension due to
the nonlinear terms in the currents.

It is worth noting that the enhanced conformal BMS3 algebra (2.13) can also be seen
as an infinite-dimensional nonlinear extension of the AdSs algebra with nontrivial central
charges.®> Thus, the obstruction to include non trivial central extensions for semisimple
algebras, supported by a classical theorem of algebraic cohomology (see e.g. [30]), can be
circumvented due to the nonlinearity of the algebra.

It is also interesting to explore whether the black hole solutions of conformal gravity
in 3D [21, 33-35] could be endowed with an additional spin-2 field in the context of the
extension of conformal gravity of Pope and Townsend [12] and Grigoriev et al. [14]. In
order to suitably explore their properties, the asymptotic behavior discussed here should be
extended along the lines of [36, 37] so as to include the chemical potentials that correspond
to the enlarged set of global charges in (2.11).

As a final remark, it is worth exploring whether the fall-off of the gauge fields implemented
by our boundary conditions could be suitably extended to incorporate either a finite or an
infinite number of conformal higher spin fields along the lines of [14] and [12], respectively. It is
then natural to expect that the full extension of the BMS3 algebra that would emerge from such

3An infinite-dimensional linear extension of AdSs has been proposed in [31, 32].



scenarios should necessarily be nonlinear in a two-folded way. Indeed, nonlinear extensions of
BMS;3 algebra are known to appear not only for its conformal enhancement, but also from
the presence of bosonic or fermionic higher spin fields as in [38-41] and [42, 43], respectively.
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