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Abstract

Background: Obesity is associated with insulin resistance (IR) and characterized by im-
paired activation of the PI3K/AKT route and glucose uptake. Elevated plasma levels of
palmitic acid (PA) diminish insulin signaling in vitro and in vivo. Origanum vulgare L. essen-
tial oil (OVEO) is rich in monoterpenes with protective effects against IR. Objective: The
study aimed to assess total phenols content and antioxidant activity of OVEO and its
cytotoxicity, as well as its effect on insulin signaling and glucose uptake in PA-treated
adipocytes. Methods: The quantification of total phenolic content was determined using
the Folin–Ciocalteu method, while the antioxidant capacity of OVEO was assessed by
DPPH (2,2-diphenyl-1-picrylhydrazyl) and FRAP (ferric reducing antioxidant power) meth-
ods. The cytotoxicity of OVEO (0.1–10 µg/mL) was assessed using the MTS assay. SW872
adipocytes were incubated with 0.4 mM PA for 24 h, with or without a 2 h preincubation
of OVEO, and then stimulated with insulin (100 nM, 10 min) or a vehicle. Phosphoryla-
tion of Tyr-IRS-1, Ser-AKT, and Thr-AS160 was analyzed by Western blot, and glucose
uptake was measured using 2-NBDG. Results: OVEO contained phenols and exhibits
antioxidant capacity. All the concentrations of OVEO assessed were not cytotoxic on SW872
adipocytes. PA decreased basal phospho-AS160 as well as insulin-stimulated phospho-IRS1,
phospho-AKT, phospho-AS160 and glucose uptake, while OVEO co-treatment enhanced
these markers. Conclusions: These findings suggest a beneficial effect of OVEO on the
PA-impaired insulin pathway and glucose uptake, which might be explained by its phenolic
content and antioxidant capacity, highlighting its potential as a complementary therapeutic
agent for IR and related metabolic disorders.
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1. Introduction
According to the World Health Organization (WHO), between 1990 and 2022, child-

hood and adolescent obesity increased fivefold, while adult obesity quadrupled. Childhood
obesity is associated with a higher risk of developing type 2 diabetes mellitus (T2DM) and
cardiovascular diseases, whereas adult obesity is linked to increased mortality and morbid-
ity from various serious health conditions [1,2].

Energy is primarily stored in white adipose tissue (WAT) in the form of triglycerides.
During obesity, visceral adiposity impairs insulin signaling, contributing to insulin resis-
tance (IR) and the development of metabolic syndrome. This impairment results from
defective activation of the insulin receptor pathway and its downstream substrates IRS-
1, AKT, and AS160, ultimately leading to reduced insulin-stimulated glucose uptake in
adipocytes [3].

Palmitic acid (PA), a 16-carbon saturated fatty acid, is elevated in individuals with
obesity and is linked to metabolic conditions such as nonalcoholic steatohepatitis and IR [4].
In vitro studies have demonstrated that PA-treated adipocytes exhibit reduced insulin-
stimulated phosphorylation of IRS-1, AKT, and AS160, along with diminished glucose
uptake [5,6]. Natural strategies, including the use of plants and their extracts, have been
shown to enhance insulin sensitivity and have attracted considerable interest, particularly
due to traditional knowledge regarding their role in the relief and treatment of diseases [7].

Origanum vulgare L. (OV), known as oregano, is native to Europe, North Africa, and
temperate and tropical regions of Asia, and has been introduced to North and South
America. It is an aromatic herb used both as a condiment and as a medicinal plant. The
composition of Origanum vulgare L. essential oil (OVEO) includes a variety of terpenoids [8].
The concentration of its constituents can vary depending on geographic location, harvest
season, genetic variation, the use of fresh or dried plant material, and the specific part
of the plant utilized [9]. OV has been reported to exhibit antimicrobial, antioxidant, anti-
inflammatory, antitumor, and hypoglycemic activities, among others, both in vitro and
in vivo [10]. Evidence from in vitro assays indicates that the aqueous acetonitrile extract of
OV can promote glucose uptake, inhibit glycosylation, and relieve oxidative stress when
applied to hepatic cells [11], while in vivo, the use of an ethyl acetate OV extract reduced
hyperglycemia and inflammation in diabetic mice [12]. However, to our knowledge, there is
no evidence regarding the role of OVEO on insulin signaling markers in human adipocytes
exposed to saturated fatty acids. In light of this, the present study aimed to investigate
the antioxidant potential, polyphenol content, and effects of OVEO on insulin signaling in
human adipocytes challenged with PA.

2. Results
2.1. Chemical Characterization of OVEO

In order to characterize the properties of OVEO, we measured its total phenolic
content using the Folin–Ciocalteu method and assessed its antioxidant capacity by the ferric
reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods,
as shown in Table 1. For comparative purposes and to provide broader context, data on
phenolic content and/or antioxidant capacity from other commonly used medicinal and
culinary herbs have also been included in Table 1.
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Table 1. Total phenols quantification and antioxidant activity of Origanum vulgare L. essential oil and
other species.

Sample TPC (mg GAE/g) DPPH (mg/L) DPPH IC50 (mg/L) FRAP (mg AAE/g)

Origanum vulgare (OVEO) 11.85 ± 0.29 1 8.09 ± 0.27 1 57.58 ± 0.30 1 10.83 ± 0.42 1

Rosmarinus officinalis
(rosemary) [13,14] 13.77 ± 1.30 2 6.00 ± 0.10 1 - -

Poliomintha longiflora
(Mexican oregano) [15] 27.85 ± 0.15 1 - 83.70 ± 4.12 1 -

Data is shown as means with standard deviations. 1 Data obtained from an essential oil of the species. 2 Data
obtained from an acetone/perchloric acid extract of the species. DPPH: DPPH scavenging capacity; DPPH
IC50: concentration of the sample required to inhibit 50% of radical; FRAP: ferric reducing antioxidant; TPC: total
phenolic content; GAE: gallic acid equivalents; AAE: ascorbic acid equivalents.

2.2. OVEO Exhibits No Cytotoxic Effects on SW872 Adipocytes

To analyze potential cytotoxicity, SW872 adipocytes were treated with varying
concentrations of OVEO (0.1, 1, 5, and 10 µg/mL) for 26 h prior to performing the
MTS assay [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-
2H-tetrazolium]. OVEO had no effect on cell viability (Figure 1) at any of the tested
concentrations compared to the control. Thus, the experiments were conducted using the
lowest OVEO concentration (0.1 µg/mL), as the main focus of this study was to evaluate
biological effects at low doses. For reference, the results obtained with OVEO at 10 µg/mL
are presented separately in the Supplementary Materials (Figures S1 and S2).

Figure 1. OVEO does not affect viability of SW872 adipocytes. Cells were treated with OVEO
(0.1–10 µg/mL, 26 h), and viability was assessed by MTS assay. Results are expressed as % of control
(dotted line at 100%). Each dot represents an individual value; the line depicts the mean from eight
independent experiments performed in triplicate.

2.3. OVEO Restores PA-Impaired AS160 Basal Phosphorylation in SW872 Cells

The impact of OVEO on the basal phosphorylation levels of IRS-1, AKT, and AS160
was evaluated in PA-treated SW872 adipocytes. As shown in Figure 2, treatment with PA re-
duced the basal phosphorylation of AKT by 37.7% compared to control cells (p < 0.05,
Figure 2B), and decreased AS160 phosphorylation by 23% relative to untreated cells
(p < 0.05, Figure 2C). Interestingly, the presence of OVEO in PA-treated cells increased
basal p-AS160 levels by 49.6% compared to cells exposed to PA alone (p < 0.05, Figure 2C).
OVEO did not alter the basal phosphorylation levels of IRS-1, AKT, or AS160 compared to
the control cells (Figure 2A–C).
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Figure 2. OVEO reverses PA-induced reduction in basal AS160 phosphorylation in SW872 adipocytes.
Cells were treated with PA (0.4 mM, 24 h) with or without OVEO (0.1 µg/mL, 26 h). Immunoblots
show the basal phosphorylation of (A) IRS-1, (B) AKT, and (C) AS160. Samples were run on the
same gel (see Figures S3–S5). Results are presented as fold change relative to control (dotted line).
Dots represents individual values; lines depicts the mean from five to six independent experiments.
# p < 0.05 vs. vehicle; * p < 0.05 vs. PA. Analysis was performed using a t-test or a generalized linear
model, as appropriate.

2.4. OVEO Restores PA-Impaired IRS-1, AKT, and AS160 Insulin-Stimulated Phosphorylation in
SW872 Cells

To investigate the effect of OVEO on insulin signaling activation in SW872 adipocytes,
the phosphorylation levels of IRS-1, AKT, and AS160 were analyzed. As illustrated in
Figure 3A, PA exposure led to a decrease in insulin-induced IRS-1 phosphorylation by
44.5% compared to the control cells (p < 0.05, Figure 3A) and in AKT phosphorylation by
38% relative to the control (p < 0.05, Figure 3B). PA also reduced p-AS160 levels by 39%
compared to the control cells (p < 0.05, Figure 3C).
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Figure 3. OVEO restores insulin-stimulated phosphorylation of IRS-1, AKT, and AS160 impaired
by PA in SW872 adipocytes. Cells were treated with PA (0.4 mM, 24 h) with or without OVEO
(0.1 µg/mL, 26 h), followed by insulin (100 nM, 10 min). Immunoblots show the insulin-stimulated
phosphorylation of (A) IRS-1, (B) AKT, and (C) AS160. Samples were run on the same gel (see Figures
S3–S5). Results are presented as fold change relative to the control (dotted line). Dots represent
individual values; lines depict the mean from six independent experiments. # p < 0.05 vs. vehicle;
* p < 0.05 vs. PA. Analysis was performed using a t-test or a generalized linear model, as appropriate.

To determine whether OVEO could counteract PA-induced disruption of insulin
signaling, we measured p-IRS-1, p-AKT, and p-AS160 levels in adipocytes co-treated with
OVEO. For this purpose, OVEO (0.1 µg/mL) was added 2 h before PA treatment and
remained present throughout the entire 24 h PA exposure period. The presence of OVEO
increased the phosphorylation of IRS-1, AKT, and AS160 by 57.4%, 65.8%, and 83.3%,
respectively, compared to PA-treated cells (p < 0.05, Figure 3A–C), suggesting that the
essential oil can counteract the alterations caused by PA. In contrast, OVEO alone did
not modify insulin-stimulated phosphorylation of IRS-1, AKT, or AS160 compared to
vehicle-treated controls (Figure 3A–C).

2.5. OVEO Counteracts Palmitic Acid-Impaired Glucose Uptake in SW872 Adipocytes

Since OVEO counteracts the PA-induced reduction in insulin-stimulated phosphoryla-
tion of IRS-1, AKT, and AS160 in SW872 adipocytes—and considering that glucose uptake
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is a key downstream event in insulin signaling—we investigated whether OVEO influences
this process in PA-treated cells following insulin stimulation. As expected, PA treatment
resulted in a reduction in insulin-induced glucose uptake by 70.2% compared to control
cells (p < 0.05, Figure 4). Interestingly, the presence of OVEO in PA-treated cells increased
glucose uptake to 102.1% (p < 0.05, Figure 4). Relative to vehicle-treated cells, OVEO alone
did not alter insulin-induced glucose uptake (Figure 4).

Figure 4. OVEO reverses PA-induced reduction in glucose uptake in SW872 adipocytes. Cells
were treated with PA (0.4 mM, 24 h) with or without OVEO (0.1 µg/mL, 26 h), followed by insulin
(100 nM, 10 min). Glucose uptake was assessed using 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-
2-deoxyglucose (2-NBDG). Results are presented as fold change relative to the control (dotted line).
Dots represent individual values; lines depict the mean from nine independent experiments. # p < 0.05
vs. vehicle; * p < 0.05 vs. PA. Analysis was performed using a t-test or a generalized linear model,
as appropriate.

3. Discussion
Obesity results from complex interactions among biological, genetic, environmental,

and behavioral factors, significantly reducing life expectancy. Central adipose tissue
accumulation triggers IR, which is a key pathophysiological factor in the development of
T2DM and other comorbidities linked to excessive fat accumulation [2,16]. Recent evidence
has demonstrated that medicinal compounds derived from plants have the potential to
prevent and treat various conditions, including IR associated with obesity and T2DM [7,17].
Herbs have been used for remedial purposes since ancient times, and the WHO estimates
that approximately 60% of people use herbal medicine [18]. Origanum extract has been
effectively employed as an herbal medicine for the treatment of metabolic conditions [10,19].
The efficacy of herbal preparations is likely attributable to the synergistic interplay among
several constituents, rather than the action of a single compound [20]. Accordingly, we
focused on evaluating OVEO as a complete mixture rather than isolating and examining its
individual pure compounds.

The main components present in OVEO have been identified through chemical charac-
terization by gas chromatography–mass spectrometry, revealing that oxygenated monoter-
penes are the primary constituents of the essential oil, followed by monoterpene hy-
drocarbons and sesquiterpenes [21]. Natural monoterpenes and essential oils rich in
these compounds have demonstrated antioxidant activity [22]. Similarly, polyphenols are
widely recognized for their antioxidant capacity, both in vitro and in vivo. These bioactive
molecules have been shown to ameliorate IR by reducing postprandial glucose levels,
modulating glucose transport, and influencing insulin signaling pathways, among other
mechanisms [23]. OVEO has been reported to contain phenols and exhibit antioxidant
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properties. In this study, OVEO extracted from leaves demonstrated excellent antioxidant
activity, as evidenced by IC50 values, compared to essential oils from Poliomintha longi-
flora (Mexican oregano) [15] and OV leaves and flowers [24]. The antioxidant potential of
OVEO, determined by FRAP, was nearly equal to that of another OV subspecies (Greek
oregano, O. vulgare L. subsp. hirtum (Link) Ietswaart) [25]. Similarly, the phenolic content of
OVEO closely approximated the TPC of Rosmarinus officinalis, another widely used culinary
and medicinal herb [14]. It is important to clarify that the comparison of OVEO with the
essential oils of Rosmarinus officinalis and Egyptian Origanum vulgare in this study was
intended solely as a reference to other commonly used medicinal and culinary herbs. As
phytochemical equivalence cannot be assumed between these species due to differences
in chemotype, geographic origin, and processing methods, such comparisons should be
interpreted with caution. This perspective is supported by recent findings from Khademi
Doozakhdarreh et al. [26] who demonstrated that the essential oil composition, antioxidant
activity, and total phenolic content of Rosmarinus officinalis vary significantly depending
on harvesting time and drying method. This highlights how environmental and technical
factors can markedly influence the chemical profile and biological properties of essential
oils, reinforcing the need to interpret interspecies or interstudy comparisons within these
limitations. Accordingly, the results presented in this study for OVEO reflect the specific
chemotype and experimental conditions under which the oil was obtained and analyzed,
including its geographic origin (Chile), extraction process, and preparation method.

Given the presence of phenolic compounds and the antioxidant capacity of OVEO,
it was postulated that OVEO could be a promising candidate for in vitro evaluation of
its potential to ameliorate impaired insulin signaling in adipocytes. Origanum has been
reported to improve IR and modulate the expression of genes involved in carbohydrate
metabolism [10]. Interestingly, extracts of OV have demonstrated the ability to improve
serum glucose profiles in hyperglycemic and diabetic animal models [27]. Conversely,
PA, which is elevated in individuals with obesity, has been linked to IR [4]. This in vitro
study is the first to demonstrate the effect of OV on PA-treated SW872 adipocytes. Our
findings indicate that OVEO did not affect the viability of SW872 cells and counteracted
PA-impaired IRS-1/AKT/AS160 activation and glucose uptake. Evidence from a mouse
model of cognitive deficit induced by a high-fat diet (HFD) has shown that thymol, one
of the main components of OV [21], enhances the expression of phospho-Ser473 AKT in
the brain [28]. Our data revealed that OVEO improved phospho-Ser473 AKT levels in
PA-treated adipocytes compared to cells treated only with PA. Therefore, a beneficial role
was also evidenced in a human adipose cell line, aligning with the documented protective
effects of OVEO’s main constituents against molecular impairments found in models of
insulin signaling alteration [28].

Monoterpenes are volatile compounds abundantly present in citrus fruits, vegetables,
spices, and herbs. These compounds are classified as terpenes consisting of two isoprene
units and may exhibit either acyclic or cyclic structures [22]. Some of the abundant ter-
penes present in OVEO include cis-sabinene hydrate, 4-terpineol, thymol, and γ-terpinene,
among others that are less represented in the essential oil [21]. On the other hand, glucose
uptake is crucial for regulating plasma glucose levels, thereby directly influencing glucose
tolerance [3]. Notably, monoterpenes such as limonene have been demonstrated to enhance
glucose uptake in 3T3-L1 adipocytes [29]. Our findings indicate an improvement in PA-
impaired glucose uptake in SW872 adipocytes treated with OVEO, which might be related
to its monoterpene content. Nevertheless, additional research is required to determine the
precise relationship between specific components of the monoterpene family in OVEO and
glucose uptake.
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In this study, PA exposure reduced insulin-stimulated phosphorylation of IRS-1, AKT,
and AS160, along with impairing glucose uptake in SW872 adipocytes. Interestingly,
these impairments in phosphorylation and glucose uptake were abrogated by OVEO.
Unfortunately, we did not find scientific evidence on the effects of OVEO’s most abundant
compounds on these specific phosphorylation events. However, data are available on
the pathophysiological phenomena associated with IR and T2DM. Terpineol, one of the
main constituents of OVEO [21], has been shown to enhance insulin sensitivity in rats fed
an HFD [30]. Thymol, a natural phenolic monoterpenoid found in OVEO [21], reduced
body weight gain, hemoglobin A1C, and glucose levels, as well as reversed peripheral
insulin resistance in an obese murine model fed an HFD [28,31]. Although we did not
evaluate OVEO’s effects on obesity-related disruptions in animal models, OVEO exhibited a
protective effect by alleviating the molecular alterations caused by PA in SW872 adipocytes.

Carvacrol, a natural liquid phenolic monoterpenoid found in the essential oil of OV, has
been shown to influence the PI3K/AKT pathway. In streptozotocin-induced type 1 diabetes
mellitus and T2DM db/db mice, intraperitoneal administration of carvacrol exhibited
anti-diabetic effects. Specifically, carvacrol significantly improved blood glucose levels,
increased the phosphorylation of 3-phosphoinositide-dependent protein kinase-1 (PDK1)
and phosphoinositide 3-kinase (PI3K), and decreased the phosphorylation of phosphatase
and tensin homolog (PTEN) [32]. As a constituent of OVEO, carvacrol may contribute
to the observed effects; however, it cannot be excluded that these effects result from the
synergistic action of carvacrol with other more abundant components in the essential oil.
Further studies are required to elucidate the specific contributions of these compounds.

In summary, Origanum vulgare exhibits antioxidant activity both in vitro and in vivo [10].
Similarly, polyphenols and terpenes are well known for their ability to improve insulin
responsiveness in these settings [22,23]. In this study, OVEO counteracted PA-induced
downregulation of IRS-1, AKT, and AS160 activation, as well as glucose uptake, in SW872
adipocytes (Figure 5). These findings may be attributed to the phytochemical content
of OVEO.

 

Figure 5. Schematic representation of main findings of the role of OVEO on PA-treated SW872
adipocytes. Image created with Napkin.AI beta 2025.
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4. Materials and Methods
4.1. Herb Material and Origanum vulgare L. Essential Oil (OVEO)

Aerial parts of Origanum vulgare L. were harvested during the flowering stage in Chi-
cauma, Lampa, Metropolitan Region, Chile (33◦14′23′′ S, 70◦54′27′′ W). Botanical identifica-
tion was performed by the taxonomist Alicia Marticorena (MSc) at the CONC Herbarium,
Universidad de Concepción, Chile (specimen ID: CONC 191040). Essential oil was obtained
from 300 g of fresh leaves through steam distillation for 3 h, yielding approximately 2.5 mL
per cycle. The oil’s density was determined to be 0.920 g/mL, based on the mass ratio of
1 mL of essential oil to 1 mL of distilled water at 20 ◦C. The extracted oil was stored at
−20 ◦C until further use.

4.2. Total Phenolic Content (TPC)

The content of total polyphenols present in the OVEO sample was assessed by the
Folin–Ciocalteu spectrophotometric method according to Santos et al. [33] with some
modifications. A volume of 210 µL of distilled water was placed into 96-well plates. Then,
30 µL of sample, 80 µL of 20% sodium carbonate, and 100 µL of Folin–Ciocalteu reagent
(Sigma Aldrich, Taufkirchen, Germany) were added to each well. The reaction mixture was
incubated at room temperature for 60 min in the dark, and absorbance was subsequently
measured at 765 nm using a microplate reader (Epoch, Biotek Instruments, Winooski, VT,
USA). Gallic acid (GA; Sigma Aldrich, Taufkirchen, Germany) served as the calibration
standard, and results were reported as milligrams of gallic acid equivalents per gram
(mg GAE/g).

4.3. Antioxidant Power

The antioxidant capacity of OVEO was determined by DPPH and FRAP spectrophoto-
metric methods. An aliquot of the OVEO solution (50 µL) was mixed with 250 µL of 0.5 mM
DPPH (Sigma Aldrich, Taufkirchen, Germany) solution. The plate was incubated for 30 min
at room temperature and in the dark. Absorbance was read at 517 nm using an Infinite
F50 reader (Tecan®, Männedorf, Switzerland). Trolox was used as a standard solution
(5–100 ppm). The percentage of inhibition was determined using the following equation:

(Acontrol − Asample)
Acontrol

× 100

where Acontrol is the absorbance of DPPH and Asample is the absorbance of the reference
standard and extract, respectively. The plot of % inhibition versus concentration was then
generated, and the IC50 (mean inhibitory concentration) in mg/L was calculated.

For the FRAP assay, a sample of OVEO (20 µL) was mixed with 180 µL of FRAP
solution (consisting of 300 mM acetate buffer, 10 mM 2,4,6-tri(2-pyridyl)-s-triazine (TPTZ),
and 20 mM FeCl3). The mixture was incubated at 37 ◦C for 15 min. After incubation,
absorbance was read at 593 nm using an Infinite F50 reader (Tecan®). Trolox (Sigma Aldrich,
Taufkirchen, Germany) (µmol TEAC/g) and ascorbic acid (Sigma Aldrich, Taufkirchen,
Germany) (mg AAE/g) were used as standard solutions.

4.4. SW872 Cell Culture and Adipogenic Differentiation

The SW872 cell line (ATCC HTB-92, Manassas, VA, USA), originally derived from
a human fibrosarcoma, was used in this study. Preadipocytes were maintained in a hu-
midified incubator at 37 ◦C with 5% CO2 and cultured in Dulbecco’s modified Eagle’s
medium/nutrient mixture F-12 (DMEM/F-12, Sigma-Aldrich, St. Louis, MO, USA) sup-
plemented with 10% fetal bovine serum (FBS, Biological Industries, Beit-Haemek, Israel)
and antibiotics (penicillin–streptomycin, Biological Industries). Upon reaching confluence,
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differentiation was induced by culturing the cells for 10 days in DMEM/F-12 with 1% FBS,
supplemented with 1 M dexamethasone (Sigma-Aldrich), 1 M rosiglitazone (Calbiochem®,
Darmstadt, Germany), 10 µg/mL insulin (Insuman®, Sanofi-Aventis, Paris, France), and
0.5 mM 1-methyl-3-isobutylxanthine (Calbiochem®). Maturation into adipocytes was
confirmed by the accumulation of lipid droplets [6].

4.5. Assessment of Cell Viability and Experimental Treatments

Adipocyte viability following exposure to various concentrations of OVEO was as-
sessed using the CellTiter 96® Aqueous One Solution Cell Proliferation Assay (Promega,
Madison, WI, USA), in accordance with the manufacturer’s protocol. This assay was em-
ployed to determine the appropriate OVEO concentration for subsequent experiments.
After differentiation (day 10), cells were incubated with 0.1, 1.0, 5, and 10 µg/mL of OVEO.
The incubation period with OVEO was 26 h, corresponding to the maximum exposure
time used in this study, which included 24 h of co-treatment with OVEO + PA plus 2 h
of pre-treatment with OVEO. Following treatments, 20 µL of MTS reagent were added.
After 3 h of incubation, absorbance at 490 nm was measured using an ELx808 microplate
reader (BioTek Instruments, Inc., Winooski, VT, USA). Background absorbance at 630 nm
was recorded and subtracted from the A490 readings. Data were expressed as a percentage
relative to the control group.

A 100 mM PA (Sigma-Aldrich, St. Louis, MO, USA) stock solution was prepared by
dissolving PA in 0.1 M NaOH and heating at 70 ◦C in a shaking water bath. In parallel, a
10% fatty acid–free bovine serum albumin (FFA-BSA; Sigma-Aldrich) solution was prepared
in water at 55 ◦C. The PA solution was then conjugated to the BSA solution by continuous
stirring, according to the method presented by Cousin et al. [34], before dilution in the
culture medium. Following the completion of the differentiation process, SW872 adipocytes
were incubated with PA or vehicle (0.1 M NaOH and FFA-BSA solution) for 24 h with or
without OVEO (2 h preincubation) and then stimulated with insulin (100 mM, 10 min)
or vehicle (Figure 6). Therefore, the experimental conditions were as follows: untreated
cells (control), 0.4 mM PA, 0.1 µg/mL OVEO, or 0.1 µg/mL OVEO (2 h prior) + 0.4 mM
PA, under insulin-stimulated or basal conditions. The insulin concentration and exposure
duration were selected based on prior studies demonstrating a two-fold increase in AKT
phosphorylation relative to unstimulated adipocytes [35].

Figure 6. Schematic representation of treatments in differentiated SW872 adipocytes. Image created
with Napkin.AI beta 2025.
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4.6. Western Blot Analysis

Total protein lysates were prepared by sonicating SW872 cells at 4 ◦C in a lysis buffer
containing 50 mM Tris base, 150 mM NaCl, 10 mM sodium pyrophosphate, 100 mM NaF,
2 mM orthovanadate, and 1% NP-40 (pH 8.0), supplemented with PhosSTOP (Roche,
Mannheim, Germany). Protein concentrations were determined using the bicinchoninic
acid assay (Pierce, Rockford, IL, USA). Samples containing 40 µg of total protein were
heat-denatured in sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE)
loading buffer (240 mM Tris-HCl, 40% glycerol, 8% SDS, 20% 2-mercaptoethanol, pH
6.8). Proteins were separated on 8–10% polyacrylamide gels and transferred onto 0.22 µm
nitrocellulose membranes (Amersham™ Protran®, Munich, Germany) using a cold transfer
buffer (194 mM glycine, 24 mM Tris, 20% methanol). Membranes were blocked with 5%
BSA in Tris-buffered saline containing 0.05% Tween-20 (TBS-T), and then incubated with the
following primary antibodies: anti-IRS-1 (E-12) (1:300; Santa Cruz Biotechnology, Dallas,
TX, USA), phospho-IRS-1 (Tyr612) (1:500; Invitrogen, Carlsbad, CA, USA), anti-AKT (1:1000;
Cell Signaling, Danvers, MA, USA), phospho-AKT (Ser473) (1:1000; Cell Signaling), anti-
AS160 (C69A7) (1:500; Cell Signaling), and phospho-AS160 (Thr642) (1:500; Cell Signaling).
β-actin (1:3000; Santa Cruz Biotechnology) was used as the internal loading control.

Following incubation with peroxidase-linked secondary antibodies, immune com-
plexes were visualized using the substrate Westar Supernova (Cyanagen, BO, Italy), and
detection was performed with the LI-COR C-DiGit Blot Scanner (Lincoln, NE, USA). Band
intensities were quantified using ImageJ software version 1.53h (NIH, Bethesda, MD, USA).
Densitometric comparisons were made using bands derived from the same membrane.

4.7. Glucose Uptake

To assess glucose uptake, equivalent quantities of SW872 preadipocytes were plated
in 6-well dishes, and upon reaching confluence, the cells underwent differentiation as
described above. Following a 10-day differentiation period, adipocytes were exposed or
not to 0.4 mM PA for 24 h, with or without OVEO, as previously described. After treatment,
cells were washed and incubated in serum-free DMEM (Sigma-Aldrich, St. Louis, MO,
USA) for 2 h. The medium was then removed, and cells were rinsed twice with glucose-free
Kreb’s Ringer buffer (KRB) containing 145 mM NaCl, 10 mM HEPES (pH 7.4), 2.6 mM
CaCl2, 5 mM KCl, and 1 mM MgCl2. Next, adipocytes were stimulated with 100 mM
insulin in glucose-free KRB for 30 min at 37 ◦C under 5% CO2. Afterwards, the fluorescent
glucose analog 2-NBDG (Cayman Chemical, Ann Arbor, MI, USA) was added, and cells
were incubated for an additional 15 min. Uptake was halted by aspirating the medium,
and cells were washed twice with glucose-free KRB. Lysis was performed by adding a
buffer composed of 150 mM NaCl, 50 mM Tris base, and 1% NP-40 (pH 8.0) directly to
the wells. Lysates were transferred to black, clear-bottom 96-well plates, and fluorescence
was measured at 465/540 nm (excitation/emission) using a Synergy 2 fluorimeter (BioTek
Instruments Inc., Winooski, VT, USA).

4.8. Statistical Analysis

Normality of data distribution was evaluated using the Shapiro–Wilk test. Com-
parisons between two experimental conditions were conducted using Student’s t-test.
Statistical analyses were performed with STATA software, version 18.8. Data are presented
as dot plots indicating individual values, with the mean represented by a horizontal line. A
p-value below 0.05 was considered statistically significant.
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5. Conclusions
OVEO mitigated PA-impaired insulin-stimulated activation of IRS-1, AKT, and AS160,

as well as glucose uptake in human SW872 adipocytes. We suggest that the phenolic and
terpene content of OVEO contributes to its impact on PA-treated adipocytes. However,
additional research is required to clarify the role of OVEO in modulating insulin sensitivity
disrupted by saturated fatty acids, a phenomenon observed in obesity and other metabolic
conditions. Future research—especially in vivo studies—is needed to evaluate the effi-
cacy and underlying biological mechanisms of OVEO in counteracting insulin resistance.
Moreover, examining the bioavailability of its constituents, along with their safety and
effectiveness in human populations, will be essential to support the potential use of OVEO
as a therapeutic option for obesity-associated disorders.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph18081128/s1, Figure S1: Effect of 10 µg/mL OVEO on basal
phosphorylation of IRS-1, AKT, and AS160 in PA-treated SW872 adipocytes. Figure S2: Effect of
10 µg/mL OVEO on insulin-stimulated phosphorylation of IRS-1, AKT, and AS160 in PA-treated
SW872 adipocytes. Figure S3: Full image of the blot for phospho-IRS-1 and IRS-1 in basal (non-
insulin-stimulated) and insulin-stimulated SW872 adipocytes; Figure S4: Full image of the blot for
phospho-AKT and AKT in basal (non-insulin-stimulated) and insulin-stimulated SW872 adipocytes;
Figure S5: Full image of the blot for phospho-AS160 and AS160 in basal (non-insulin-stimulated) and
insulin-stimulated SW872 adipocytes.
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FBS Fetal bovine serum
FFA Fatty acid-free
FRAP Ferric reducing antioxidant power
GA Gallic acid
GAE Gallic acid equivalents
HFD High-fat diet
IC50 Mean inhibitory concentration
IR Insulin resistance
KRB Kreb’s Ringer buffer
MTS 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium
2-NBDG 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose
OV Origanum vulgare
OVEO Origanum vulgare essential oil
PA Palmitic acid
PAGE Polyacrylamide gel electrophoresis
PDK1 3-phosphoinositide-dependent protein kinase-1
PI3K Phosphoinositide 3-kinase
PTEN Phosphatase and tensin homolog
T2DM Type-2 diabetes mellitus
TBS-T Tris-buffered saline containing 0.05% Tween-20
TEAC Trolox equivalent antioxidant capacity
TPC Total phenolic content
TPTZ 2,4,6-tri(2-pyridyl)-s-triazine
WAT White adipose tissue
WHO World Health Organization
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