symmetry

Article

Geometric Numerical Test via Collective Integrators: A Tool for
Orbital and Attitude Propagation

Francisco Crespo (7, Jhon Vidarte 2, Jersson Gerley Villafafie 3

check for
updates

Academic Editor: Francisco Martinez

Received: 25 August 2025
Revised: 14 September 2025
Accepted: 18 September 2025
Published: 4 October 2025

Citation: Crespo, F,; Vidarte, J.;
Villafafie, ].G.; Zapata, J.L. Geometric
Numerical Test via Collective
Integrators: A Tool for Orbital and
Attitude Propagation. Symmetry 2025,
17,1652. https://doi.org/10.3390/
sym17101652

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ / creativecommons.org/
licenses /by /4.0/).

and Jorge Luis Zapata %*

Department of Aerospace Engineering, Embry-Riddle Aeronautical University, 1 Aerospace Blvd,
Daytona Beach, FL 32114, USA; crespocf@erau.edu

Departamento de Matematica y Fisica Aplicadas, Universidad Catdlica de la Santisima Concepcién,
Casilla 297, Concepcién 4051381, Chile; jhon.vidarte@uesc.cl

3 Grupo GISDA, Departamento de Matematica, Facultad de Ciencias, Universidad del Bio-Bio, Collao 1202,
Casilla 5-C, Concepcién 4051381, Chile; jersson.villafane1902@alumnos.ubiobio.cl

Programa de Formacién Pedagégica para Licenciados y/o Profesionales, Facultad de Educacién,
Universidad San Sebastidn, Lientur 1457, Concepcién 4080871, Chile

Correspondence: jorge.zapata@uss.cl

Abstract

We propose a novel numerical test to evaluate the reliability of numerical propagations,
leveraging the fiber bundle structure of phase space typically induced by Lie symmetries,
though not exclusively. This geometric test simultaneously verifies two properties: (i)
preservation of conservation principles, and (ii) faithfulness to the symmetry-induced fiber
bundle structure. To generalize the approach to systems lacking inherent symmetries, we
construct an associated collective system endowed with an artificial G-symmetry. The original
system then emerges as the G-reduced version of this collective system. By integrating the
collective system and monitoring G-fiber bundle conservation, our test quantifies numerical
precision loss and detects geometric structure violations more effectively than classical
integral-based checks. Numerical experiments demonstrate the superior performance of
this method, particularly in long-term simulations of rigid body dynamics and perturbed
Keplerian systems.

Keywords: collective integrator; numerical test; continuous symmetry; rotational dynamics;
orbital dynamics

1. Introduction

Quantifying the error in numerical simulations is a critical yet non-trivial task. A stan-
dard diagnostic is to verify the conservation of classical invariants like energy or angular
momentum. This paper uses geometrical tools to improve upon this approach, introducing
a numerical test based on the conservation of the underlying fiber bundle structure of the
phase space. In our examples, this geometric test proves to be a more sensitive and reliable
error indicator than integral-based checks. Although the preservation of these indicators
does not guarantee accuracy, their deviation unequivocally reveals deteriorating numerical
performance. A comparative analysis with other classical error estimators, such as those
based on different step sizes, is beyond the scope of this work and is left for future research.

We present a dual contribution: a geometric test for systems with symmetries, and a
general framework extending this test to arbitrary ODEs, even those without conserved
quantities. The method is most insightful for higher-dimensional systems, as 2D systems
with integrals often lack the structural complexity to showcase its advantages over simple
energy conservation.
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Our work builds on two previous ideas: (i) the analysis of fiber bundle structures in KS-
regularized Keplerian systems [1,2], where emergent G-symmetry [3-5] shares features with
our framework; (ii) the formal concept of collective integrators for Lie-Poisson systems on
R3 [6,7]. However, we diverge in scope and purpose by generalizing the framework beyond
R3 and transforming collective structures into diagnostic tools for numerical validation
rather than advancing geometric or symplectic integration methods [8].

Geometric Test

We do not deal with the conservation of Lie symmetries under discretizations like
some methods from geometric integration [9-11]. Instead, we assess the validity of a
numerical simulation employing the following methodology. We will consider a numerical
integration of an initial value problem defined in the open domain B C R" and given by

x=f(x), xcB, feccC(B). (1)

Then, we distinguish two cases depending on whether system (1) is endowed with
a continuous symmetry. In the first case, in addition to the conservation principles, we
propose to check whether the numerical scheme preserves the symmetry-induced fiber
bundle structure [12,13] of the phase space. Namely, if the symmetry of system (1) is given
by the action of a Lie group G [12,13], for any two initial conditions in the same orbit
<;‘8 = ¢pand 6(1) = g * §o with g € G, the following holds:

g*P(t,Go) — ¢(t,25) =0,

where ¢(t, &p) is the solution of system (1) through &,. Note that this condition goes beyond
the conservation of the integrals associated with G: it checks if the phase between two
initial conditions in the same orbit is conserved. Then, for a given numerical method
applied to (1) ¢(t, &o), we propose the following geometrical numerical test:

(L&) =0, F(té) =+ ¥ I8 @t &) — g7 Bt E)Il 2

G) 0<i<j<s

where g; € G and gy is the identity element.

For systems lacking inherent symmetry, we construct an associated collective system,
defined in a higher-dimensional space and endowed with an artificial G-symmetry, such
that the original system emerges as its G-reduction. By integrating this collective system,
we may then verify the preservation of the G-fiber bundle structure, generalizing the
geometric test to arbitrary ODEs.

For the benefit of readers less familiar with the underlying geometrical framework,
concise definitions of key concepts (e.g., fiber bundle, Lie symmetry, collective system) are
provided in Appendix B.

2. Collective System of Differential Equations

In this section, we define a collective system of differential equations, which plays a
central role in our research and can be thought of as the inverse idea of a reduced system.
Additionally, we give our main theoretical results, which are closely related to Theorem 2.1
in [6]. However, how we employ these results is quite different from the previous literature.

Definition 1. Let us consider the open domain E C R™ and £, a differentiable vector field defined
on E. The following system
4=1£(9), q€E feCl(E), 3)
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is said to be a collective system of differential equations associated with (1) if the following condi-
tions hold:

(i)  There exist a surjective map 7t and a topological space F satisfying that (E, B, t, F) is a fiber
bundle, where B is the base space, E is the total space, and F is the fiber.

(i)  There exists a set of global sections of 7t (7t o o = Idp), which is a parametric family of maps
0y :B— E,witha € I CR.

(iii) The flow of system (3) descends to (1); that is to say, the following diagram commutes:

T

(]
—
7T

N

o ™
o ™

where, ®(t,q) and ¢(t, x) are the flows associated with systems (1) and (3), respectively. Then,
for each initial condition gy and &y = 71(qo), we have T (P(t,q0)) = ¢(t, o) for all times t
where the corresponding flows are defined.

Moreover, whenever the bundle 7t projection is smooth, we say that (3) is the collective system
smoothly associated with (1). Conversely, we may refer to (1) as the F-reduced system associated
with (3). Symplectic reduction [14,15] provides examples of the above structures.

At first sight, the above definition refers to very exotic entities. However, in the
following Section 3, we will show that any given system can be easily endowed with a
collective system.

The following proposition generalizes Proposition 4.5 from [6].

Proposition 1. Let the pair (E,f) be a collective system smoothly associated with (1). Any
fiber-preserving numerical integrator ® of the flow ® descends to a numerical integrator ¢y
approximating ¢ with the same order of convergence. Moreover, if 0, is a global section of 7, and ®
is any numerical integrator of ®, then ® descends to a numerical integrator ¢, approximating ¢
with the same order of convergence.

Proof. We define a numerical integrator for system (1) utilizing the following map:
§o:B— B, do(x) :=7(P(q)), g€ 7 (x),

Since @ is fiber-preserving, this definition provides a well-defined map. For a generic
integrator (not fiber-preserving), ¢, is defined as

Gu:B— B, ¢u(x):=7m(P(0x(x))),

which also provides a well-defined map. In what follows, we drop the subindex in ¢, to
avoid repetition.

Moreover, since 77 is surjective, ¢ is defined for all x € B, and we have that the map &
descends to ¢. It can be shown that ® and ¢ share the same order of convergence. Let us
assume that ® is an integrator of order k for ®:

(h,q) = ®(h,q) + O(HHY).
Now, we project the left and right sides of the above equation through 7

n(®(h,q)) = 7(®(h,q) + O(H*)),
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which, taking into account that 77 is smooth and the definition of (/3, leads to
¢(h,x) = ¢p(h,x) + OHH).
O

In what remains, we will pay special attention to the case in which the fiber F, appear-
ing in Definition 1, is a compact Lie group G acting linearly on E, and B = E/G:

Yp:GxE—E, (g9)—8-9.
Moreover, we will impose another crucial condition by assuming that ® is G-invariant.

‘{’g‘l o®(q) 0¥y =D(g-q).

Thus, we are left with a smooth fiber bundle structure (E,E/G, 7, G), and we are
in the conditions of the theorems of Hilbert [16] and the extension of Weyl [17], which
guarantee that, for the action of a compact Lie group, there exist finitely many polynomials
01, ..,k (Hilbert basis) generating the algebra of G-invariant functions. The Hilbert basis
is not unique, and these polynomials may be chosen to be homogeneous of degrees greater
than zero. Moreover, by Schwarz’s theorem [18], we have that any G-invariant smooth
function can be constructed from a Hilbert basis. The orbit mapping

p:E—p(E) CRY ple) = (pi(e),...,px(e)), 4)

is proper and separates the orbits of the action y; see [19]. Moreover, there is a well-posed
map making the following diagram commutative:

ELpE

EN (lﬁ) ©

E/G

The map § is a homomorphism defined by p(w) := 7(x) for any x € p~'(w).
Therefore, we can take p(E) as a model for the orbit space, which generically is a semi-
algebraic variety.

Remark 1. At this point, the above Definition 1 allows us to explain our methodology. Namely,
Qiven a differential system with an initial condition o, we will associate a collective system, where we
will perform the numerical simulation. For this purpose, we will lift g to several initial conditions
{90,985 =g1-90,---, ) = gs - 43} € w 1(&o) in the same fiber, where g; € G. Our numerical
test measures the G-invariance of the collective flow along the numerical integration; that is to
say, we track the validity of the expression given in (2), where gq is the identity element of G,
and g3 = qo.

Proposition 2. In the context of Definition 1, we assume that the fiber F = G is a compact Lie
group acting linearly on E through the action 1, the base space is given as B = E/F, and fis a
G-invariant vector field. Moreover, we assume the integrator ® is equivariant with respect to the
linear map g for all § € G. Then, the integrator & is G-invariant.

Proof. Since @ is equivariant with respect to 1., we have

g o ®(h,f) opg = B(h,p*(f)), VgeEG.



Symmetry 2025, 17, 1652

50f20

Moreover, f is G-invariant, which leads us to

ng_l o ®(h,f)opg = P(h,f),

or equivalently
1p§,<i>(h, f) = ®(nf), Vged.

Thus, ®(h, f) is G-invariant. [

3. How Are Collective Systems Constructed?

There is no unique way of getting a collective system associated with a given one.
Here, we provide the reader with two methods: the first is suited for arbitrary ODE and the
second is aimed at equations in the Hamiltonian formalism.

3.1. Collective Systems for Arbitrary ODE

Without loss of generality, in system (1), we may assume that n = 3m, with m € N.
Otherwise, we add one or two fictitious variables (43,1, §3m) with their corresponding
trivial equations 4; = 0. In what follows, we will construct a collective system for the case
m = 1. For the cases m > 2, the variables are packed in 3-tuples, and the same construction
is repeated m times. Namely, we are considering the system given by

x=f(x), xeBCR? feC(B). (6)

Next, we will show that this system has an associated collective system defined in R*.
We start by relating the phase spaces R* and R®. For this aim, we employ quaternionic
notation by identifying the associative division algebra of quaternions H with the four-
dimensional real space through the usual correspondence:

RV H, q" = (91,92,93,94) = 91 + qoi + g3j + qak € L
Now, we consider the following linear S!-action on R* = H given by
p:S'xH-—H, (6,9) = o4,
where gy = cos 0 + sin 6k. The orbit mapping 4 associated with i reads as follows:
p:R* = p(RY) CR%, p(q) =Im[Grkxq] = (Zdet[w,v], 20w, (|v\2 - |w|2)),

where v = (g1,94) and w = (q2,93). The map p is proper and separates the orbits of the
action ¢. Moreover, in this case, we have that the corresponding commutative diagram (5)
is given by p = Idgs, p = 7, and p(R*) = R*/S! = R3.

Moreover, we may define a family of continuous right inverses of the projection map
7t (and hence of the orbit map p), which will be useful in the construction of a collective
system. Namely, we define {dy }¢ as a -parametric family of functions given by

b1 R 5 RY, x = ——— (5072, 109+ 3250, 20 — 1150, €032), 0(0) =0,  (7)

1
V2§

being { = \/ X34 /%2 + x3 4 x3, cg = cos 6, and sy = sin 6. These maps are continuous on
R3 and smooth on R3 — {0} for all 6.

Therefore, taking into account the above elements, the 4-tuple (R4, RS, 7, Sl) is a fiber
bundle, which is the first step in the construction of the collective system. Now, we need
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to define a vector field on R* whose flow descends to R3. For this purpose, we consider
a solution of system (6) given by x; = ¢(t, {o), where ¢ denotes the flow. Then, we may
define a curve in R* employing the composition g; := y(x¢), and we wonder whether g(t)
would satisfy a differential equation. In this regard, we differentiate q(¢) with respect to t:

%qt :d&g(xt) Xt
=dbg(x¢) f(xt) 8)
=ddg(7t(do(x¢))) f(r(dp(xt)))
=dég(7t(qr)) f(7(q1)),

which may be summarized as
g=1fo(q), qER* fg=DsofomeC (R 9)

Remark 2. The way in which the vector field £y is defined depends on the choice of 6. However, all
choices define a rotated version of the same vector field. In what follows, we will fix 8 = 0 and drop
the index for a cleaner notation.

Thus, we have proven the following theorem.

Theorem 1. System (9) is a collective system of differential equations associated with (6). More

precisely, we have the following:

(i)  The 4-tupla (Ré, Rg, 7T, Sl) is a fiber bundle.

(i) Each function in the family {dg; 6 € [0,27)} is a global section of the surjective map 7.
Namely, 6y is a continuous right inverse of 7t

oy = ldps.

(iti) The flow ®(t,q) of system (9) descends to the flow ¢(t,x) of (6); that is to say, the following
diagram commutes:

R* —2 R

dl |7
R R3
Proof. () The homeomorphism I' : R} = 7 }(R}) — R3 x [0,27), defined as
I'(q) := (n(q),arctan2(q1,q4)), is a global trivialization of R} over R3; that is to
say, the following diagram commutes:

“LR3) L R3 x [0,271)
\ lﬂl

where 711 is the projection on the first component of the product.
(i) A straightforward computation shows that the composition verifies 7t 0 dyp = Idps.
(iii) It follows from the definition of the vector field f.
O
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Remark 3. Note that the action of the unitary complex numbers U(1) on R* = C? is employed
in [6] to generate a collective system for the free rigid body. This construction is an alternative to
system (9).

3.2. Collective Hamiltonian Systems

As in the previous section, we restrict to the case of 3-DOF. For systems with more or
fewer dimensions, we add fictitious variables or consider several copies of the 3-DOF sys-
tem as required in each case. Then, we consider a Hamiltonian system defined in (T*Rg, w),
where w is the standard symplectic form; that is to say, we fix n = 6 and replace x € R3
with (x,y) € T*]RS, and a Hamiltonian function H : T*Rg — R. Thus, the differential
system (1) becomes

(4,) = (Hy, —Hz) (10)

We may obtain a collective Hamiltonian system for (10) by doubling the construction of
the previous section. Precisely, we consider the linear S'-action on the standard symplectic
space (T*R} = Hy x H, Q) given by

¥ St x Hy x H — Hy x H, 6,(9,p)) = (g0%9,80 % P),

where gg = cos 8 4 sin 6k. This is a symplectic action with respect to (2. The momentum
map reads as follows:

E:T"Ho — R  (q,p) = E(q,p) = q1ps — p194 + 9293 — P295- (11)

In [3-5], this action was used to explain the Kustaanheimo-Stiefel (KS) transformation
connecting the harmonic oscillator and the Kepler system. The generating quadratic
invariants for the ¥ action are the following 16 polynomials:

Py = q1ps — p19a + 92p3 — p2g3,
P3 = qap2 — qapa + G3p1 — q1P3,
Ps = q1p1 + q2p2 + 43p3 + qapa,
P; = qaps + p294 — 9193 — P13,

1o 5

Po= 3 (7 +0%),

1, _
P11:§(’1"J+P'P)/

P13 = q492 — 9193 + pap2 — p1p3,
P15 = qaq3 + q192 + paps + p1p2,

Py = q3p4 — qaps + q2p1 — q1P2,
Py = q1ps — p19a — 92P3 + P23,
Ps = q1p1 — G202 — 43P3 + Gapa,
Ps = q1p2 + p192 + 93p4 + P3q4,

_ 1 2 2
PlO—E(q P),
1o
P =35(G-9-p-p)

P14 = q492 — 9193 — pap2 + p1ps,
P16 = qaq3 + q192 — paps — p1p2,

(12)

where X = (x1, —xp, —x3,x4) and E = P;. However, following [5], we will employ an
alternative formulation of the reduced space associated to Y. Precisely, we consider the
quaternionic formulation of the KS-map given in [20]:

KS:THy — % CTHy (q,p) — (q* k*q, ”’;q_i*q”). (13)
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The relation with the classic XS map is more evident after imposing & = 0 in the
above quaternionic transformation and using the equivalent expression of (13) in terms of

invariants:
¢o =0, X1 =Piz+Pu, x20=Pi5+Pg, x3=P1+Pp,
_1_E 1r.p 1 Bk 1 B (4
=+ ry T2l T2k rry ST 2Dy

A remarkable relation exists between the XS map and ¥. Namely, each S!-orbit
associated with ¥ is mapped to a single point by KS. Furthermore, in [5], it was shown
that, for each fixed value of the momentum map E = ¢, the components (x1, X2, X3, Y1, Y2, Y3)
of the K& map provide an alternative representation of the ¥-reduced space. In more detail,
the reduced space N corresponding with E = ¢ is the following six-dimensional Poisson
manifold (N; = T*R3, {, }z), where the Poisson structure is given by

{/}g X1 X2 X3 n Y2 Y3

X1 0 0 0 1 0 0
x, | 0 0 0 0 1 0
x3 |0 0 0 0 0 1
1 0 0 0 ¢ x3 ﬂ (15)
” 2xF 25
—& x3 ¢ x1
0 -1 0 0
& ALE AL
) —&x1
0 0 —1 0
v3 2P 2]xP

This Poisson structure is non-degenerate since the associated matrix has rank six.
Thus, (T*R3,{, }¢) is indeed a symplectic manifold. Note also that the denominator
|x|3 = (Py + Pyp)? appearing in the above Poisson matrix is never zero. Moreover, for & = 0,
the Poisson structure {, }z— corresponds with the standard symplectic form w in T*R.

Therefore, considering the reduced space N;—g = T*R3 corresponding with the
fixed momentum ¢ = 0, and restricting to the hyper-manifold M;_o = {(q,p) € T*R} :
E(q,p) = 0}, we have the following surjective canonical map between (Mg—g, () and
(TR, )

I1: (Mzo, Q) — (T'R,w),  (4,p) — <Im[q‘*k*q], Im[”’;‘;*‘q”]),
where w is the standard symplectic form and () is the restriction of the standard symplectic
form to the manifold Mg—.

Moreover, as in the previous section, there is a family of continuous right inverses of
the projection map I1, which we employ to construct the collective Hamiltonian system.
Namely, taking into account (7), we define {Ag}g as a f-parametric family of functions
given by

No: TR = Me—o, (x,y) = (9(x), —2k % Jp(x) xy),

where y = 04 y1i + y2j + y3k is the quaternion constructed out of the components of
y. The maps IT and Ay are extensions of the corresponding low-dimensional 7t and Jg.
A straightforward computation shows that they satisfy ITo Ag = I dT*RS'
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As in the previous section, the 4-tupla (Mz—o, T*R3,I1,S!) is a fiber bundle. In or-
der to define a collective vector field on M;_q descending to T*R3, we follow the same
methodology as in the previous section. Therefore, we have

(4,p) =fo(q,p), (4,p) € Me—o, fg = DAgo foIl € C'(Mz—p). (16)
Thus, we have proven the following theorem.

Theorem 2. System (16) is a collective system of differential equations associated with (10). More
precisely, we have the following:

(i) The 4-tupla (Mg—yo, T*Rg, 11, Sl) is a fiber bundle.
(i)  Each function in the family {Ag; 6 € [0,271)} is a global section of the surjective map I1.
Namely, Ay is a continuous right inverse of 11

(iii) The flow ®(t,(q,p)) of system (9) descends to the flow ¢(t, (x,y)) of (6); that is to say,
the following diagram commutes:

M(::O L Mg:()

Hl J{H

TR} — TR3

Proof. Analogous to Theorem 1. [

4. Geometric Numerical Test Examples
4.1. Numerical Experiments in R3

In this part, all systems are chosen to be integrable, and their explicit solutions are
computed in terms of elemental functions in each case. Hence, we will be able to compare
the evolution of the solution with the approximation given by a numerical integration,
which allows us to assess in a precise way the effectivity of the geometric numerical test.

4.1.1. Example I: Linear Systems

This section uses three linear systems selected to induce significant numerical errors.
In all of them, we employ the same initial condition ¢y = (1,1,100). Precisely, we consider

E=X:(8), i=1,23, (17)

where ¢ = (x,y,z)T. Moreover, the vector fields are given by X;(&) = A; &, with A; the
square matrices:

I -1 0 & =20 0 0 -1 0

—_ |1 1 _ 1 _
Ay=|1 -1 0|, A=|20 -L 0|, A3=|1 -10 0
0 0 -1 0 0 -1 1 1 0

The first system (X;) represents a coupled oscillator with decay, where the non-normal
coupling matrix produces non-orthogonal eigenvectors. This feature may lead to hidden
transient dynamics, undetectable through eigenvalue analysis alone, hence potentially
leading to significant inaccuracies in classical explicit numerical methods. The second
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system (X5) combines high-frequency rotational components (w = 20) with weak contrac-
tion (A = 0.1), creating a challenging multiscale problem. The rapid oscillations demand
exceptionally small step sizes in explicit methods to maintain phase accuracy, while the
large initial z-component tests the error control mechanisms of stiff solvers. The disparity
between the fast rotational dynamics and slow decay rate makes this system particu-
larly sensitive to numerical treatment. Finally, the system defined by X3 exhibits extreme
non-normality characterized by strongly coupled oscillatory modes in the x-y subspace
(A =~ £9.95i) alongside a zero eigenvalue that induces algebraic growth in the z-component.
The non-orthogonal eigenvector structure enables substantial transient growth before even-
tual decay, while the zero eigenvalue leads to continuous accumulation of numerical errors
in the z-component. This combination makes X3 especially demanding for numerical
methods that assume monotonic error behavior.

Figure 1 compares the evolution of two quantities: the true numerical error (orange
line) and the geometric test evaluating fiber bundle structure preservation (blue line).
The simulations involve three components:

(@) The exact solution s(t) from (A2), (A4), and (A6), depending on the system under
consideration, with initial condition ¢;

(b) The numerical solutions 5(t) of system (17) with the same ¢o;

(c) Several collective solutions S;(t) of systems (A3), (A5), and (A7) initialized at gg * qo

and lying on the same orbit.

10000 15000 20000 0 20 40 60 80 100 0.0 05 10 15 20 25 3.0

Figure 1. Comparisons of the actual error E(t, &) (orange line) and the geometric numerical test
F(t,90) (blue line) in natural logarithmic scale. The initial condition is ¢y = (1,1,100). Moreover,
the initial conditions in the collective system are gy * o with phase angle 6 = {0, %, %”, 7T, 47”, %’T .

From left to right, each panel corresponds to the systems X1, X5, and X3, respectively.

We plot both the true error E(t,p) = ||s(t) — 5(t)| and the structure-preservation
metric F(t,qo) defined in (2) using logarithmic scaling. Each panel in Figure 1 corresponds
to one of the linear systems: the left, center, and right plots depict results for Xj, X5, and X3,
respectively. Figure 1 reveals that F(t, o) tracks E(t, {o) with remarkable fidelity, exhibiting
an approximately constant vertical offset. This demonstrates that F(t, g¢) reliably quantifies
the numerical precision loss during propagation, providing a practical diagnostic tool for
geometric structure violation.

4.1.2. Example II: The Free Rigid Body

The free rigid body (FRB) system is completely integrable. The integrals are given by
the conservation of the energy H and the angular momentum I1:

1 % % % 1 2 2 2
_LH I I g e 2, 18
" 2(11+12+13 2(1+ 2t 3) (18)

where [; are the principal moments of inertia. Hence, the equations of motion are given as

H/1 = 111H2H3, le = a2H1H3, Hg = a3H1H2,
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where a1 = (L —13)/(23),a2 = (I3—11)/(Ii3),a3 = (I — L)/(Iiz). Moreover,
the equation of motion for the collective FRB system is readily obtained as a standard
Hamiltonian system with two degrees of freedom, and Hamiltonian function

2
LBt ag) | (Bog-ata) )
L 15 I3

1[4 — 2
”H,:2< (9391 — qa92)

We provide the general solution of the FRB system following [21]. For this purpose,
we define the alternative integrals

hy = ap113 — a3, hy = a3l13 — @113, h3 = aq115 — apl 3. (19)

Once the value of h; is fixed by the initial condition IT° = (T19, 119, T19), we consider
the following point belonging to the solution evaluated in a time s = sy, which we will
employ as the redefinition of the initial condition

hy
ar ’

[h
I (s0) = ITY = a—z I(s0) =113 =0, TI3(sp) = I3 =

Then, we express the general solution in either two forms:

h h
Msts0) = /| fentus k), Mistso) = /[2]dn(uss ki)

h h

Iy (s +s9) = —/ ﬁ sn(pys,ks1), Ila(s+sp) = — ’é)sn(% s, k13), (20)
hy hy

IT3(s +s9) = o dn(pi s, ks1), Tla(s+sp) = ’@ ‘Cn(m s, k13),

where the elliptic modulus is given by

. aihi

ij = 'ajhj ;o Hi =/ laih]

and k3 € (0,1) iff aghy > 0; for the case axhy < 0, we have that ki3 € (0,1).

Figure 2 presents a representative example from our numerical experiments. The plot
demonstrates an excellent agreement between the actual error and the geometric numerical
test. While different parameter values and initial conditions may introduce a constant
vertical offset in some cases, the overall correspondence remains consistently strong across
all tested configurations.

As the free rigid body (FRB) system is completely integrable, its first integrals fully
constrain the solution trajectories. Consequently, monitoring the conservation of these
integrals provides a rigorous test for trajectory deviations in numerical simulations—a
well-established diagnostic tool in Hamiltonian dynamics. Figure 3 displays the evolution
of both energy and Casimir invariants during numerical integration. Notably, while these
traditional invariants fail to capture the solution’s progressive degradation, the proposed
geometric test closely tracks the true numerical error throughout the simulation.
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Figure 2. Comparisons of the actual error E(t,I1j) (orange line) and the geometric numerical test
(blue line) F(t,q9) given in (2). Initial condition is ITy = (cos(11/10),0,sin(11/10)). The geometric
test is executed for four initial conditions in the collective system given by gi) = g, * go with phase
angles 6y = 0,01 = 11/2,6, = /3, and 03 = 57t/3. From left to right, we propagate the numerical
evaluations in the intervals [0, 325] and [0, 10.000], respectively.

L1

0 500 1000 1500 2000

Figure 3. Comparison of the true numerical error E(t,IIy) (orange), geometric test F(t,qo)
(blue), energy conservation (red), and Casimir invariant (green). Initial condition Ily =
(cos(11/10),0,sin(11/10)) with four collective initializations g}, = gq, * g0 (6; € {0, 77/2, 71/3,57/3}).
While the geometric test closely tracks the error evolution across the time interval [0,2000], the tradi-
tional conserved quantities (energy and Casimir) remain insensitive to the numerical degradation.

Parameters are chosen to define a triaxial structure to ensure rich dynamics. The initial
condition is near an unstable equilibrium, placing the system in a sensitive regime where
numerical errors are amplified for clear quantification.

4.2. Geometric Numerical Test in Orbital Dynamics

Celestial mechanics have two fundamental integrable problems: the free rigid body
and the Kepler system. We analyzed the first one in the previous section. Here, we
consider the case of the unperturbed Kepler system and a perturbation breaking all the
associated symmetries.

4.2.1. The Kepler System

It is well known that the Kepler system is maximally super-integrable with an associ-
ated Hamiltonian function given by

i

A N B A
HK_Z(pX+py+PZ) 2+t 22

where we choose v = 1 without loss of generality. Besides the energy conservation, we will
consider other integrals of motion, such as the angular momentum.
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The symmetries of the Kepler system endow the phase space with a fiber bundle
structure, and no collective system is needed to be assigned. In order to generate our
geometric numerical test, we only need to keep track of the conservation of the fiber bundle
structure associated with the G-symmetry. Our experiments consider the diagonal action
of G = SO(3) on the phase space. Thus, the gauge in (2) is given by g9 = R(6,7) € SO(3),
where 6 and 7 are the angle and axis of the rotation.

Next, we compare our approach with the classical conservation of the energy and
the components of the angular momentum, which are the integrals associated with the
SO(3)-symmetry. Precisely, in Figure 4, we plot the energy variation, the conservation of
the angular momentum vector modulus, and the geometric numerical test, which measures
the conservation of the separation between two solutions of the Kepler system with initial
conditions

IC; = {20, —10, —100,3/2000, —3/2000,3/2000}, IC, = R(g 1, 1,1)) - 1Cy.

In Figure 4 right, we simulate one orbital period, which shows a peak at the passage
through the periapsis. The left figure simulates fifty orbital periods, where we observe
a deviation in the geometric numerical test and the modulus of the angular momentum.
At the same time, the energy remains unaltered, except for the periodic passage through
the periapsis. This feature shows that the path described by the particle may be correct,
but the position for each time is not. Otherwise, the separation of the initial conditions
should be preserved. Notice that only the geometric test has the sensibility to reflect
the secular separation between both solutions and their periodic passages through the
periapsis. Moreover, the simulation degradation becomes clear for fifty orbital periods,
as Figure 5 shows, where the configuration and momenta trajectories become thicker as
they go through the periapsis.

0.01F 1 s00f

10-10
1011

L] 100000 200000 300000 400000 500000 600000 700000 L] 5.0x10° 1.0x107 1.5%10" 2.0x107 2.5x107 3.0x107 3.5x107

Figure 4. Comparisons of the energy variation (red line), modulus of the angular momentum
vector (green line), and the geometric numerical test (blue line). From left to right, we considered
1 and 50 orbital periods, respectively. The initial condition is given by {0, Y0, 20, Pxo, Pyg Pzo} =
{20, —10, —100,3/2000, —3/2000,3/2000} and the rotation angle is 6 = 77/3.
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Figure 5. From left to right, we plot the positions and momenta for 50 orbital periods with initial
condition {{o, Yo, 0, Pxg, Pyor Pzo} = {20, —10, —100, 3/2000, —3 /2000, 3 /2000}.

4.2.2. Perturbed Kepler System

In most common applications, Keplerian systems are endowed with perturbations
destroying all the symmetries. In this case, the only possible test is the conservation of the
energy unless we construct the collective system associated with the perturbed Keplerian
system. Then, we also have the geometric numerical test proposed in this paper.

In this part, we consider the following perturbed Kepler Hamiltonian:

H=Hk+eP,

where the perturbation is given by

P=—w(xpy—ypx)+ byx? + byy? + b3z + c1xy + coxz + c3yz + a xyz. (21)

Depending on the values of the parameters w, by, by, b3, c1, ¢, c3,a € R, we may obtain
several well-known models (Stark, Zeeman, Lunar problem, artificial satellite, galactic tidal
effects, etc.).

The collective system associated with this perturbed Keplerian family is again a
Hamiltonian system defined in the cotangent bundle T*R3, which we compute following
Section 3.2. Precisely, it is given as the following perturbed harmonic oscillator in resonance
1:1:1:1, which matches the KS-regularization of the original Keplerian system:

H="Ho+eP,

where

X

1
0=5(PR+B AR+ A+ B+ ),

(22)
P =dw(rd — 6p) +4M (4b1q2 + 4bop? + bym?® + 4cypq + 2comq + 2c3mp + 4dmpq),
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where v = (q1,q4), W = (92,93), V = (pa,p1), W = (p3,p2), and we introduce the
following notation: q = det[w, V|, § = det[V,w] +det(W,v],p=v-w,r=V-v4+W-w,
M = [[v]2 + [w|[2, 5 = [ V]2 + [W]2, and m = [|v][2 = [[w]>.

The collective Hamiltonian 7 is endowed with the S!-symmetry given by the action
of the Hamiltonian flow associated to & = q1p4 — p1g94 + 923 — p24q3. Hence, the gauge gy
employed in our simulations is given by the diagonal multiplication along the configuration
and momenta spaces of the following matrix:

cos 0 0 0 —sinf
0 cosf —sinf 0
0 sinf  cos6 0
sin 6 0 0 cos 0

86 =

In our simulations, we consider the following values for the parameters:
w=>by =by=1, b3 =313872, c; =3 =0, cp =46.1969, d = —1429.57, € = 0.01.

These values were specifically tuned to obtain solutions for the non-linear equations
involved. With these values, we could compute a 27r-periodic orbit using the sub-harmonic
Melnikov method. Precisely, the periodic orbit has initial conditions close to the following
point in phase space:

1 1 V3 1 1 1 1
(QOIPO) = <40<—\f3—1)/0/m/Slm(\/g—l),—mlmlé;)-

A low-eccentricity orbit provides an astrodynamically relevant test case, offering a
precise benchmark for evaluating long-term performance and phase-error detection.

First, we consider the original Hamiltonian system given by (21), and we simulated the
above-mentioned periodic orbit until we observed that the numeric solution is no longer
close to periodic behavior. In Figure 6, we show a numeric simulation of the descended
flow for 1, 40, and 101 orbital periods. Notice that the numerical simulation is progressively
worsening until it diverges after completing the orbital period 101.

Now, we consider the collective Hamiltonian system given by (22). Next, we com-
pare the conservation of the energy, the integral &, and the geometric numerical test.
Figure 7 shows no significative differences for fewer than five orbital periods. However, af-
ter completing the five orbital periods, the geometric numerical test changes tendency with
sustained growth, while the energy and the integral & remain almost constant. The images
for 10 and 30 orbital periods show that the geometric numerical test detects how the errors
are growing, in consonance with the simulations in the descended system given in Figure 6.
Only after 101 orbital periods do energy and the integral = suddenly detect the anomalous
behavior of the integration.
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Figure 6. From left to right, we plot 1, 40, and 101 orbital periods of the periodic orbit associated with
the perturbed Kepler system (21). The first row corresponds with the configuration space, and the
second with the momenta.
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Figure 7. From left to right, we plot 1, 10, 30, and 101 orbital periods of the periodic orbit associated
with the collective perturbed Kepler system (22). Gauge computed with 8 = 71/3. Comparisons of
the energy variation (red line), Casimir invariant (green line), and the geometric numerical test (blue
line) are shown.

5. Conclusions and Future Work

This paper has introduced a novel geometric numerical test designed to evaluate the
reliability of numerical simulations by monitoring the preservation of the fiber bundle
structure inherent in a system’s phase space.

The efficacy of the proposed geometric test was demonstrated through extensive
numerical experiments on both linear and nonlinear systems, including the free rigid
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body and perturbed Keplerian problems. In all cases, the test F(t,qg) proved to be a
highly sensitive and reliable indicator of numerical error, often detecting precision loss
and structural violations much earlier and more clearly than the conservation of classical
invariants like energy or angular momentum. This confirms that preserving the underlying
geometric structure is a more stringent and informative condition for numerical accuracy
than the conservation of first integrals alone.

While this work establishes a framework for geometric numerical testing, several
promising directions remain for future research: a comprehensive comparative analysis
between our geometric test and established global error estimators (e.g., step-doubling
methods). In addition, a direct, quantitative comparison of our geometric test’s performance
on benchmark geometric integrators (e.g., variational /symplectic) versus classical methods
is mandatory. Moreover, the method should be tested on a wider range of problems
to further validate its generality and utility.
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Appendix A. Collective Systems Associated with the Linear Examples

In this appendix, we present the explicit form of the collective systems associated with
the three linear examples analyzed in Section 4.1, along with their corresponding exact
solutions. These collective systems were constructed using the methodology described in
Section 3.1, taking 8 = 0 in the section Jy.

All collective vector fields are written using the following auxiliary quantities:

v=1(q1,94), W=(q2.93), v=|vl], w=]w],

g=detjw,v], p=v-w, M=v*+w? m=v>—uw

(A1)
All systems share the same initial condition ¢y = (1,1,100).

Appendix A.1. System X,

The exact solution of the first system is

x(t) = cos% - siné, y(t) = cos %r z(t) = 100", (A2)
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The corresponding collective system on R$ is

g1 =0,

S -1 2 2 4 2 4 2.2
qz—szg,(q p+2p(p? + o) +q(2p + 20" — ??)),
i3 = o (a2 + 2dp +207 + %) + po?) )
qS_ZMB qq p p 4 pvw 7

4as = 21\1/10(‘7 +dp — p—v + v*w )

Appendix A.2. System X

The exact solution for the second system is
x(t) = e cos(20t), y(t) = e®sin(20t), z(t) =e . (A4)
The associated collective system in R} reads as follows:

4'1=0

iy = 10M s (20002p +200p(p? + o) + g (60* - 50%0?) ),
o
= T0M03

(q2 + pz — 50 + 51)2w2>.

(A5)

2004° + 200 (p* + v*) + po* (502 — 602)),

4= ToMo

Appendix A.3. System X3

The exact solution to the third system is

x(1) = e 1 (11— 3VIT + (114 3VT1) V1),
y(t) = 21—2673\Mt (11 +3V11+ (11 - 3\5) e6mt), (A6)

z(t) = 31—3 (66 — V1T 3Vt 4 \/ﬁeg’mt).

The associated collective system is
g1 =0,

1
2 = 25 (P(? +2dp + p?) + q(g — p)o® + (10 + p)o*
s = — (g% +2dp + p?) — (p — q)po® + (g + 10p)o* 7
i = 25 (108 +2dp + 1) — (p — q)p0* + (g + 10p)0*),

i1 = 7= ((g = p)(A0(g + p) 7).

Appendix B. Glossary of Key Concepts

Fiber Bundle (E, B, t, F). A geometrical object that generalizes the notion of a product
space. The total space E is built by attaching a copy of the fiber F to every point of the base
space B, via a projection map 7t : E — B. Locally, it looks like a direct product B x F, but it
can be “twisted” globally. Example: the Mobius strip is a fiber bundle where the base B is a
circle and the fiber F is a line segment [12,13].

Lie Group (G). A Lie group is a mathematical object that is both a group (it has an
operation for combining elements, like multiplication) and a smooth manifold (it is a space
that looks locally like Euclidean space and on which you can do calculus). This combination
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allows one to describe continuous symmetries of geometric objects. The key idea is that
you can smoothly vary between group elements [13,22,23].

Lie Group Symmetry (G-symmetry). A symmetry of a system (e.g., a differential equation)
where the transformations form a Lie group G—a smooth manifold that is also a group
(like the rotation group SO(3)). The system is invariant under the action of this group.
Example: the gravitational force in a Keplerian system is invariant under rotations in space,
a symmetry governed by the group SO(3) [23-25].

Collective System. A system of differential equations constructed in a higher-
dimensional space, artificially endowed with a Lie group symmetry (G-symmetry), such
that the original system of interest is exactly the result of “removing” or reducing that
symmetry. It provides a lifted framework on which geometric tests can be performed [6].

Reduction (or G-reduction). The reverse process of constructing a collective system. It
is the method of deriving a simpler, lower-dimensional system (the reduced system) from a
higher-dimensional one that has a known symmetry, by “factoring out” or quotienting by
the action of the symmetry group G [14,15,22].
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