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Abstract

The rapid evolution of the IT industry has attracted many professionals without prior IT
experience, creating opportunities and a critical need for effective training and continu-
ous education to maintain a skilled and adaptable workforce. Despite this demand, only
about one third of non-IT professionals transitioning into the field remain long-term,
often due to insufficient training. This issue becomes particularly challenging when ad-
dressing crosscutting aspects of the discipline, such as programming, error detection, and
requirements specification. Considering the above, this paper proposes teaching strate-
gies tailored to the most representative learning style within the industry to improve
professional development and retention in Software Engineering. To address this, Kolb’s
Learning Styles Test was administered to 112 software development professionals to iden-
tify the predominant learning style. The responses were analyzed to determine patterns
and insights relevant to training. The analysis revealed that the Thinking Learning
Style is the most representative among industry professionals. Based on this finding, we
present customized teaching strategies to address key challenges in Software Engineering
Training.

Keywords: Software Engineering Education, Crosscutting Teaching Strategies, Kolb’s Learning Styles,
Software Workforce Training

1 Introduction

The increasingly critical role of software in key systems presents new challenges for the education of soft-
ware engineers, although software developers are currently still educated in traditional ways [1]. Moreover,
software engineering is a young and promising discipline, still under development and improvement, which
is evident in the evolving curriculum and teaching methodologies used in higher education [2]. Furthermore,
the main dichotomy that we face in engineering is learning by studying (at school) versus learning by doing
(at work) [3], and this issue is not a binary choice. In this way, the learning process for industry professionals
is shaped by various factors, such as professional experience, educational background, and training strate-
gies employed by companies. In addition, there is a significant mismatch between industry requirements
and recent graduates’ competencies [4, 5], prompting organizations to allocate resources for supplementary
training for new employees. Despite these efforts, only one third of the employees without an IT background
continue to work in the IT sector for the long term [6]. This highlights the need to implement knowledge
management systems and foster learning organizations to improve the learning process within industrial
environments [7].

Considering this context, our research aims to bridge the gap between educational practices and industry
demands by exploring two key research questions:

• R.Q.1: What is the predominant learning style among professionals in the software industry?

• R.Q.2: What are the teaching strategies for addressing crosscutting aspects in software development
training?

Rationale: Identifying the predominant learning style among software industry professionals helps define
teaching strategies, providing a baseline for tailoring training approaches, considering that crosscutting as-
pects refer to competencies and knowledge areas that extend beyond technical skills, influencing professional
practice and teamwork for any role of the Software Development Team. Separately, the term “crosscutting
teaching strategies” refers to instructional approaches that can be applied across different content areas in
software engineering education, regardless of whether they address technical, soft, or managerial topics.

To assist lecturers and provide a quick reference, this paper is structured as follows: Section 2 provides
an overview of Kolb’s Learning Styles Inventory (KLSI); Section 3 reviews related work on the application
of KLSI in Software Engineering Education; Section 4 outlines our research methodology, including the
execution process; Section 5 presents the survey findings, identifies the predominant learning styles, and
proposes customized educational strategies; Section 6 details the outcomes of an external validation process;
Section 7 examines the possible study’s limitations and threats to validity; and Section 8 and Section 9
discuss implications for enhancing the education of software practitioners, conclude the study, and propose
future research directions.
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2 Kolb’s Learning Styles Inventory - KLSI

Kolb [8] defined learning as “the process whereby knowledge is created through the transformation of expe-
rience: knowledge results from the combination of grasping and transforming experience,” and introduced
the Experiential Learning Cycle (see Figure 1) as a recursive process that is responsive to the learning en-
vironment and the subject matter being learned [8]. Learning styles describe the unique ways individuals
spiral through the learning cycle based on their preference for four different learning modes [8] as shown in
Figure 1.

Figure 1: The Experiential Learning Cycle [8]

However, data from empirical and clinical studies over the years has shown that these original four
learning style types can be further refined into a nine-style typology [8] — Initiating, Imagining, Reflecting,
Analyzing, Thinking, Deciding, Acting, and Balancing — known as the Kolb’s Learning Style Inventory (see
Figure 2), to define various approaches or modes of engaging with the learning process, each with its distinct
characteristics and preferences.

Kolb’s Learning Style Inventory (KLSI) builds on the original four learning modes, expanding them into
nine distinct styles:

• Initiating: This style is marked by the ability to take action in response to experiences and situations,
integrating both active experimentation and concrete experience.

• Experiencing: Characterized by a deep engagement with experiences to extract meaning, this style
combines concrete experience while balancing both active experimentation and reflective observation.

• Imagining: Defined by the ability to envision possibilities through observation and reflection on
experiences, this style blends concrete experience with reflective observation.

• Reflecting: Distinguished by the ability to connect experiences with ideas through extended reflection,
this style merges reflective observation with both concrete experience and abstract conceptualization.

• Analyzing: This style involves structuring and systematizing ideas through reflection, combining
reflective observation with abstract conceptualization.

• Thinking: Defined by the ability for focused, abstract, and logical reasoning, this style uses abstract
conceptualization while balancing both active experimentation and reflective observation.

• Deciding: This style involves using theoretical models and frameworks to make decisions and deter-
mine actions, blending abstract conceptualization with active experimentation.
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Figure 2: The Nine KLSI Learning Styles [8]

• Acting: Characterized by a strong drive for goal-oriented actions that integrate both people and
tasks, this style emphasizes active experimentation, with a balance of concrete experience and abstract
conceptualization.

• Balancing: Defined by adaptability, this style involves weighing the benefits of action versus reflection,
as well as experience versus thinking, balancing all four learning modes: concrete experience, abstract
conceptualization, active experimentation, and reflective observation.

To better illustrate how different teaching approaches align with the Kolb Learning Style Inventory
(KLSI), we present a mapping in Table 1 to highlight how various educational strategies support different
learning modes, providing a more explicit link between theoretical models and practical applications.

Table 1: Mapping of teaching approaches to KLSI learning modes
Teaching Approach Associated KLSI Dimension(s)
Role-playing in requirements elicitation Concrete Experience, Active Experimentation
Problem-based learning Reflective Observation, Active Experimentation
Project-based teamwork Concrete Experience, Abstract Conceptualization
Case studies in software design Abstract Conceptualization, Reflective Observation
Simulations and modeling exercises Active Experimentation, Abstract Conceptualization

Given the skills necessary and the conceptual framework provided by KLSI, Software Engineering Educa-
tion (SEE) can benefit from identifying the predominant learning style of software development practitioners.
By aligning instructional methods with their preferred learning styles, this approach can foster more effective
skill development.

3 Related Work

The research regarding the application of Kolb’s Learning Style Inventory (KLSI) in educational contexts,
particularly in understanding individual learning preferences and styles, takes into account key insights at
the outset of role identification:
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1. Kolb’s Learning Style Inventory demonstrates reliability across different cultures and languages, as
evidenced by the successful adaptation and validation of the Hebrew version, which exhibited similar
reliability and internal consistency to the original English version [9].

2. The KLSI effectively distinguishes among students’ major study areas, supporting its utilization in
identifying individual learning styles and potentially guiding role identification within educational
contexts [9].

3. Utilizing the KLSI in educational settings, including software engineering education, offers insights into
the learning styles of students, faculty, and field instructors, with potential implications for optimizing
learning experiences and role assignments [10].

The Kolb Learning Style Inventory (KLSI) has played a pivotal role in understanding and categoriz-
ing students’ learning styles, spanning various educational contexts, including software engineering. It has
garnered widespread acceptance and empirical support, undergoing iterative refinements to address limita-
tions and enhance its utility. For instance, a study by [10] adapted the KLSI into a continuous measure,
proving more concise and user-friendly through multi-sample studies with graduate students in engineering
and computer science. Moreover, investigations into the relationship between KLSI-assessed learning styles
and student interaction in asynchronous computer-mediated conferencing (CMC) confirmed theoretical pre-
dictions of the Kolb model [11], highlighting the influence of learning styles on communication behavior in
online learning environments.

Efforts to bolster the reliability of Kolb’s Revised Learning Style Inventory have yielded modifications
significantly improving its stability, as evidenced by higher test-retest reliabilities and kappa coefficients [12],
further affirming its value for studying learning styles. In software engineering education, accommodating
diverse learning styles among students has been a challenge, addressed through pilot initiatives adapting
teaching methods to varied learning habits [13]. Moreover, broader reviews of learning style instruments,
including the KLSI, emphasize the importance of diverse teaching approaches to cater to student diversity
[14]. An exploratory study utilizing the KLSI highlighted the significance of understanding how students
learn, suggesting its utility in aligning teaching strategies with student preferences in both field and classroom
experiences [15].

In an emerging research field, efforts have been made to identify, group, and define technical and soft skills
for software engineers, facilitating the development of comprehensive frameworks to enhance undergraduate
education in Software Engineering [16]. Recent pilot efforts have even utilized the KLSI to characterize
the learning styles of Software Architects, proving instrumental in refining teaching and learning strategies
tailored to this specific role [17, 18].

In summary, the KLSI serves as a valuable tool in identifying and accommodating diverse learning
styles in software engineering education. Its continual evolution and application across educational settings
underscore its relevance in enhancing the learning experience for students in this field, complementing efforts
to establish benchmarks and assess progress in Software Engineering Education.

4 Research Method

This section presents an overview of the survey used as a research method and discusses aspects related to its
administration, inclusion and exclusion criteria, assumptions, and characterization of the survey respondents.

4.1 Kolb’s Learning Style Test Survey

To address our research questions and guide our study, we relied on the insights presented in [1, 19], partic-
ularly in defining evaluation criteria and data analysis methods. In particular, we adopted the Guidelines
for Case Survey Research [19] by applying inclusion/exclusion criteria to reduce bias, and on data analysis
methods by employing descriptive statistics, t-tests, and visual representations such as radial graphs tak-
ing into account the Challenges in Survey Research [19]. Additionally, we focus our roadmap considering
to provide effective means for software engineering students to keep their skills current [1] by crosscutting
teaching strategies. Considering the nature of our investigation, we opted to utilize a survey, specifically the
Kolb’s Learning Styles Test, for data collection. The survey was made available in both English and Spanish
to ensure that participants could respond in their preferred language, minimizing potential language bias,
and the test consists of 12 sentence completion questions (see Table 2), where participants are asked to rank
the provided suffixes on a scale of 1 to 4, with 4 indicating the highest preference. This format allows us to
evaluate the extent to which participants lean towards the four learning modes and enables us to categorize
each participant into a learning style [8].
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Table 2: Kolb’s test applied

PREFIX SUFFIX

Q1. “When I
learn. . . ”

I prefer to rely on my sensations and feelings

I prefer to look and pay attention

I prefer to think about ideas

I prefer to do things

Q2. “I learn best
when. . . ”

I trust my hunches and feelings

I listen and observe carefully

I trust my logical thoughts

I work hard to get things done

Q3. “When I am
learning. . . ”

I have strong feelings and reactions

I am reserved and calm

I seek to reason about things that are happening

I feel responsible for things

Q4. “I learn
through. . . ”

Feelings

Observations

Reasonings

Actions

Q5. “When I
learn. . . ”

I am open to new experiences

I take into account all related aspects

I prefer to analyze things by breaking them down into their component parts

I prefer to do things directly

Q6. “When I’m
learning. . . ”

I am an intuitive person

I am an observant person

I am a logical person

I am an active person

Q7. “I learn best
through. . . ”

Relationships with my peers

The observation

Rational Theories

The practice of the topics covered

Q8. “When I
learn. . . ”

I feel involved in the topics covered

I take my time before acting

I prefer theories and ideas

I prefer to see the results through my own work

Q9. “I learn best
when. . . ”

I rely on my intuitions and feelings

I rely on personal observations

I take into account my own ideas about the subject matter

I personally try out the task

Q10. “When I am
learning. . . ”

I am open-minded

I am a reserved person

I am a rational person

I am a responsible person

Continued on next page
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Table 2: Kolb’s test applied (Continued)

Q11. “When I
learn. . . ”

I get involved

I prefer to observe

I prefer to evaluate things

I prefer to take an active attitude

Q12. “I learn best
when. . . ”

I am receptive and open-minded

I am careful

I analyze ideas

I am practical

Considering the survey results, the respondent can be characterized based on these modes, and a ra-
dial graph can illustrate their learning style. Within this framework, individuals positioned closer to the
outer corners of the graph exhibit a stronger inclination toward the respective learning mode, and this
categorization corresponds to one of the nine Learning Styles identified in the KLSI.

4.2 Inclusion/Exclusion Criteria

Our research established the following inclusion/exclusion criteria for the participants:

4.2.1 Inclusion Criteria

To qualify for participation in the study, respondents must meet the following criteria:

• They must be software development practitioners.

• They must not have previously completed the Kolb’s Learning Styles Test.

4.2.2 Exclusion Criteria

To uphold the study’s integrity and mitigate potential biases, individuals will be excluded from participation
if they meet any of the following conditions:

• Lack of proficiency in written English or Spanish.

• Work directly with any of the researchers involved.

Therefore, our research is based on the following assumptions:

• Assumption 1: The sample’s heterogeneity, regarding professionals’ roles and experience, will provide
comprehensive insight into learning styles, facilitating the identification of representative trends.

• Assumption 2: The Kolb test, designed for adults, applies to professionals without necessitating
adjustments or modifications.

4.3 Test Execution Process

For our research, the execution of the survey considered the following aspects:

4.3.1 Test Administration

The test was administered voluntarily, and responses were collected anonymously using a link to access the
test. Invitations were extended via LinkedIn to individuals currently employed in Software Development,
inviting them to participate.
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4.3.2 Survey Sample Characterization

The test was administered over 60 days, from the second week of January to the first week of March.
Ultimately, a sample of 112 participants 1 from Chile, Costa Rica, Argentina, Colombia, and Spain who met
the criteria was obtained. The details are as follows:

• The sample included 15 Analysts, 50 Developers, 27 Project Managers, 2 Quality Assurance profes-
sionals, and 18 Software Architects, as shown in Figure 3.

Figure 3: Practitioners per Role

• Consists of 70 Senior professionals, 24 Mid-Senior professionals, and 18 Junior professionals. Their
percentage representation is shown in Figure 4.

Figure 4: Practitioners’ Experience

• It included 46 practitioners from Chile, 23 from Argentina, 16 from Spain, 15 from Costa Rica, and 12
from Colombia, as shown in Figure 5.

1The conference paper [18] did not include QA-based analysis, whereas this extended study incorporates it to explore
transversal aspects in more depth.
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Figure 5: Practitioners per country

5 Research results

After conducting the test, the scores for each learning mode of all practitioners were calculated (see Appendix
1). Based on these scores, the mean, median, and standard deviation for the entire sample were determined,
as presented in Table 3.

Table 3: Survey results statistics
LEARNING MODE CE RO AC AE
MEAN 24.86 29.84 33.30 32.00
MEDIAN 24.50 30.00 33.50 32.00
MEAN-MEDIAN DIFFERENCE 0.36 0.16 0.20 0.00
STD DEVIATION 5.46 5.66 5.33 6.06

To determine the validity of the mean as a representative measure of each learning mode for the sample,
we employ the t-student test [20] and define our hypotheses H0 and H1 as follows:

• H0 → The mean of each learning mode is not representative of the Sample.

• H1 → The mean of each learning mode is representative of the SPMs Sample 2.

Searching the Student’s t-distribution table (two-tailed) with a significance level of 0.05 (corresponding
to 95% confidence) and 111 degrees of freedom (112 − 1 = 111), the critical value for the sample is ±0.96.
To determine the t-statistic value for each learning mode, we will use the formula:

t =
x̄− µ

s÷
√
n

where

• x̄ represents the sample mean,

• µ represents the hypothetical population mean (median),

• s represents the sample standard deviation,

• n represents the sample size.
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Table 4: t-statistic value for each Learning Mode
Learning Mode t-statistic value
Concrete Experience (CE) 0.69
Reflective Observation (RO) -0.30
Abstract Conceptualization (AC) -0.39
Active Experimentation (AE) 0.00

Utilizing the scores from Table 3 and taking the median as our hypothetical population mean, the results
of the t-statistic value for each mode can be observed in Table 4.

Finally, since the statistical value for each learning mode falls within the acceptance interval determined
by the critical value of the Student’s t-distribution, ±0.96, we reject our H0 hypothesis and accept H1. This
indicates that the sample mean is representative of each learning mode in the sample and serves to define
the most representative learning style.

5.1 Software Development Practitioners Learning Style

To address our R.Q.1, based on the mode values presented in Table 3, we observe that the AC mode exhibits
the strongest inclination, indicating a preference for theoretical analysis. However, there is a balance between
the AE and RO modes, suggesting that practitioners also show a significant preference for the practical
application of learning and for considering multiple perspectives before taking action. The CE mode, while
still present, shows a less pronounced preference for learning through hands-on experience compared to the
other modes. Overall, although the modes are not perfectly balanced, all four are notably represented,
leading to the classification of software development practitioners under the Thinking Learning Style, as
illustrated in Figure 6.

Figure 6: Thinking: Predominant learning style radial graph

The Thinking Learning Style emphasizes Abstract Conceptualization (AC) while maintaining a balance
between Active Experimentation (AE) and Reflective Observation (RO). This style is marked by a strong
ability for disciplined engagement in abstract reasoning, mathematics, and logic [8]. Individuals with the
Thinking style typically enjoy working with numbers and engaging in tasks that require abstract reasoning

2By “representative of the sample,” we refer to the concept that the sample mean accurately reflects the central tendency
of the sample’s learning modes.
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and analytical skills. They tend to prefer working with quantitative data over qualitative information [8].
Additionally, they excel at planning and goal-setting, express emotions in a controlled way, and favor precise
and concise communication [8]. Moreover, individuals with the Thinking style are particularly strong in
logical analysis, rational decision-making, and the ability to analyze quantitative data effectively.

5.2 Software Development Teams Teaching Strategies

To address our R.Q.2, it is essential to recognize that the “Thinking Learning Style” is characterized by
specific traits [8]:

• Prefers abstraction and logical reasoning, excelling in analytical tasks.

• Enjoys working with numbers and quantitative data.

• Thrives in structured environments with clear objectives.

• Focuses on precision and coherence in their approach.

When teaching software development teams with this learning style, educators should create a structured
environment that aligns with these preferences. By emphasizing logical analysis, systematic planning, and
decision-making, educators can maximize the strengths of this style. At the same time, it is important to
address potential challenges, such as fostering collaboration and encouraging introspection. Recommended
activities for such teams include:

1. Problem-solving exercises [21, 22] that involve logical analysis and the application of abstract
concepts, encouraging students to break down complex problems into manageable components.

2. Data-driven tasks [23] such as analyzing code performance or optimizing algorithms, which allow
students to work with quantitative data and hone their analytical skills.

3. Structured group discussions [24, 25] that promote clear communication and precise explanations,
ensuring that all team members are aligned in their goals and approaches.

4. Simulated real-world scenarios [2] with defined objectives, where students must apply theoretical
knowledge to solve practical problems, enhancing their ability to focus on results while maintaining
logical rigor.

Additionally, strategies like Problem-Based Learning and Project-Based Learning provide the
opportunity to bridge the gap between theory and practice, allowing students to engage with complex,
open-ended problems. These methodologies encourage students to:

• Apply theoretical knowledge to real-world challenges, promoting critical thinking and practical problem-
solving.

• Collaborate within teams, enhancing communication and teamwork skills, even for those with a pref-
erence for analytical thinking.

• Develop self-directed learning skills, as students are encouraged to explore and research solutions
independently within a structured framework.

To provide a clearer overview of the learning preferences of software development practitioners and the
recommended pedagogical strategies, two tables are presented below. Table 5 summarizes the learning
preferences of professionals in software development, along with recommended pedagogical strategies to
maximize their effectiveness.

Table 6 highlights key educational strategies and the expected outcomes of their implementation in
software development teams.

By integrating these teaching strategies, educators can foster a learning environment that caters to the
Thinking Learning Style, helping students develop both their technical and interpersonal skills while ensuring
that they are well-prepared for the dynamic challenges of software development.

6 External Validation

The objective of the external validation was to assess the applicability and relevance of the proposed educa-
tional strategies by engaging with professional training consultancies that specialize in software development.
This step aimed to gather expert feedback on the feasibility of the strategies and their alignment with in-
dustry needs.
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Table 5: Summary of Practitioners’ Learning Preferences and Recommended Pedagogical Strategies
Learning Preferences Recommended Pedagogical Strategies
Preference for abstract
reasoning and logic

Strategies focused on logical analysis and solving
complex problems.

Enjoy working with num-
bers and quantitative data

Activities based on data analysis and algorithm op-
timization.

Thrive in structured envi-
ronments with clear objec-
tives

Use of structured projects with defined goals and
clear steps to achieve them.

Focus on precision and co-
herence in their approach

Promotion of precise communication and detailed
documentation in teamwork.

Table 6: Key Educational Strategies and Their Expected Outcomes
Educational Strategy Expected Outcomes
Problem-Based Learning Encourages critical problem-solving and applying

theory to practice.
Project-Based Learning Enhances collaboration and communication skills,

develops leadership abilities.
Structured Group Discus-
sions

Aligns team objectives, improve communication and
decision-making.

Quantitative Problem-
Solving Tasks

Reinforces data analysis and evidence-based
decision-making.

Real-World Scenario Sim-
ulations

Applies theoretical knowledge to practical situations
and develops adaptability skills.

6.1 Methodology

The validation process involved a focus group session [19] conducted with representatives from three profes-
sional training consultancy firms (ref. partial transcription in Appendix 2). These organizations are known
for designing and implementing training programs for software development teams in various industries.

Participants: The focus group included six participants:

• Two senior consultants from a specialized corporate training firm.

• Two instructional designers from postgraduate programs focusing on technical skill development.

• Two technical leads from an OTEC3, experienced in software engineering education.

Procedure: The session was structured into three parts:

• Presentation of Results: A brief overview of the research findings, including the identification of the
“Thinking Learning Style” and the proposed strategies.

• Interactive Discussion: Participants provided their perspectives on the feasibility, strengths, and po-
tential limitations of the strategies in real-world training scenarios.

• Feedback Collection: Participants filled out a structured feedback form to rate and comment on specific
aspects of the strategies.

Guiding Questions: The guiding questions were designed to elicit in-depth feedback from the partici-
pants, encouraging them to reflect on their experiences and evaluate the proposed strategies critically. These
were:

• Are the identified learning styles representative of your experience with software development teams?

• How practical are the proposed strategies in corporate training environments?

• What adjustments would you recommend to improve their implementation?

3In Chile, OTEC is the abbreviation of Organismos Técnicos de Capacitación (Technical Training Organizations)
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6.2 Results of the Focus Group

To provide further evidence, we include a brief synthesis of key discussion points from the focus group, along
with relevant quotes illustrating participant perspectives.

1. Positive Feedback

• The consultants agreed that the “Thinking Learning Style” accurately reflects the cognitive pref-
erences of many software developers, particularly those in roles requiring analytical and problem-
solving skills.

• The strategies were deemed practical and aligned with common industry challenges, such as
enhancing algorithm optimization and team communication.

2. Suggestions for Improvement

• Incorporate more collaborative activities to address the challenges of fostering teamwork among
analytical learners.

• Adapt some strategies for remote learning environments, as many training programs are now
delivered online.

• Develop more case-based scenarios tailored to specific roles, such as quality assurance or software
architects.

6.3 Implications for the Study

The feedback validated the core premise of the research while highlighting areas for refinement. Incorporating
these suggestions will enhance the versatility and effectiveness of the proposed strategies, making them more
applicable across diverse training contexts.

7 Limitations and Threats to Validity

The robustness and validity of this study are subject to certain limitations and potential threats, which are
outlined below to ensure a transparent understanding of the factors influencing our findings and conclusions.

• Sample size: One of the limitations of this study is the small sample size, which may affect the
generalizability of the findings. This is acknowledged as a potential threat to validity. While the
sample size is limited, the study’s findings are derived from clear trends observed in the collected
data [19]. The statistical analysis further supports the reliability of these results by demonstrating a
well-defined data distribution. The minimal differences between the mean and median suggest a nearly
symmetric distribution, offering an accurate representation of the target population. Additionally, the
moderate standard deviation provides valuable insight into data dispersion, enhancing the robustness
of the findings across both partial and complete samples.

• Sample diversity: Although heterogeneous samples can pose challenges in some studies, the diversity
of professional roles and experiences included in this research was instrumental in uncovering meaning-
ful trends. This variety enriched the analysis by capturing a broader spectrum of perspectives within
the software development field.

• Role Imbalance: The over-representation of developers (50 participants) compared to other roles,
such as analysts, project managers, and QA professionals, may have influenced the identification of
the “Thinking Learning Style” as the predominant style. Nonetheless, previous research by the au-
thors [18] provides a more detailed examination of cognitive differences across these roles, supporting
the interpretation of these findings.

• Response bias mitigation: While respondent bias is a potential risk in any survey-based study,
Kolb’s test employed here is specifically designed to minimize such effects. The inclusion of neu-
tral prefixes ensures balanced responses, reducing the likelihood of skewed results and reinforcing the
validity of the collected data.
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8 Discussion

The findings of this study provide important insights into the cognitive preferences of software development
professionals, revealing that the ”Thinking Learning Style” is the most representative within the surveyed
sample. This result underscores the tendency of professionals in this field to engage in abstract reasoning,
logical analysis, and systematic problem-solving. The dominance of Abstract Conceptualization, coupled
with a balance between Active Experimentation and Reflective Observation, highlights the dual need for
both theoretical understanding and practical application in software engineering training. This balanced
profile suggests that while professionals excel at formulating abstract ideas, they also value hands-on exper-
imentation and reflective practices that enable them to adapt solutions to complex problems.

The statistical analysis confirmed the representativeness of the learning modes, validating the robustness
of the survey data. The minimal variance between the mean and median of the modes reinforces the consis-
tency of the sample’s cognitive tendencies, ensuring that the identified learning style is not an anomaly but
a reliable reflection of the broader population. Additionally, the external validation through the focus group
with professional training consultancies further confirmed the relevance of these findings. Experts agreed
that the “Thinking Learning Style” accurately reflects the cognitive tendencies they observe in software
development teams, particularly in roles requiring high analytical capabilities. Moreover, the focus group
provided valuable recommendations for enhancing the strategies, such as incorporating more collaborative
activities to foster teamwork and adapting methods for remote learning environments, which are increas-
ingly prevalent in professional training contexts. These insights align with broader discussions in software
engineering education about the importance of integrating technical and interpersonal skills development in
training programs [8, 9, 19].

In summary, these findings and validations provide a robust foundation for designing educational strate-
gies that align with the cognitive strengths of software practitioners. Tailoring approaches to the “Thinking
Learning Style” can enhance learning outcomes by leveraging professionals’ strengths in abstract reasoning
and systematic problem-solving while addressing the challenges of collaboration and adaptability in dynamic
software development environments.

9 Conclusion and Future Work

This study has identified the “Thinking Learning Style” as the predominant cognitive preference among
software development professionals. Specifically, this finding emphasizes their strong inclination towards
abstract reasoning, logical analysis, and systematic problem-solving. These cognitive strengths serve as a
crucial foundation for the design of educational strategies tailored to the specific needs of software profes-
sionals. In this regard, the results highlight the importance of aligning teaching methods with the cognitive
profiles of learners to enhance their engagement and learning outcomes. Furthermore, the proposed teaching
strategies, which were developed based on the findings of this study, were validated through an external
focus group with professional training consultancies. The feedback received confirmed that the strategies
are not only practical but also highly relevant to the real-world challenges faced by software development
teams. This validation process has reinforced the alignment of our approach with industry needs and has
provided valuable insights into areas for refinement, particularly the inclusion of collaborative activities and
the adaptation of methods for remote learning environments. These enhancements are essential in addressing
the evolving nature of software engineering education, where flexibility and adaptability are key.

In addition, the statistical analysis performed on the survey data has confirmed the robustness and
reliability of the findings. The minimal variance between the mean and median values, as well as the
acceptance of the null hypothesis in t-tests, further supports the credibility of the results. This statistical
consistency assures that the identified learning style is not an anomaly but a dependable reflection of the
broader population of software professionals. Ultimately, by tailoring training approaches to the cognitive
preferences of software professionals, both educators and organizations can foster more effective learning
environments. These environments will enhance skill acquisition, retention, and professional development,
which are crucial for addressing the increasing demands of the software industry. This study provides a clear
path toward bridging the gap between academic education and industry-specific training practices, creating
a more integrated and cohesive learning ecosystem.

In conclusion, this research contributes significantly to the ongoing discourse on software engineering
education. By demonstrating the importance of understanding and leveraging cognitive preferences, the
study underlines how personalized, adaptive strategies can transform training programs. The integration
of both theoretical knowledge and practical application, along with the adaptability to dynamic learning
environments, ensures that these strategies will remain relevant and impactful in the professional development
of software engineers.
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In terms of future work, we will focus on applying the proposed educational strategies in real-world
software development environments, with direct collaboration from the OTEC that participated in the
external validation process. Additionally, we will explore the adaptation of these strategies for remote
learning environments to address the increasing demand for flexible and online professional training in the
software industry.

Furthermore, although the analysis conducted considers IT professionals in general, it is highly relevant
to carry out a comparative study between professionals with and without a formal background in the in-
dustry to understand how their educational foundations influence their learning preferences and professional
development. Another relevant direction for future research is to consider demographic and professional
factors such as age and seniority. These variables may influence learning preferences and perceptions of
educational strategies. Their inclusion in a larger, more diverse sample could provide more nuanced insights,
enabling a better understanding of how different profiles respond to various teaching methodologies.
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Appendix 1 - Scores for each learning mode of all the sample

Table 7: Practitioners’ score for Learning Mode

N° Role Experience Country CE RO AC AE
1 Analyst Junior Colombia 32 21 31 36
2 Analyst Senior Spain 21 23 46 30
3 Analyst Junior Argentina 25 24 26 45
4 Analyst Junior Costa Rica 26 33 40 21
5 Analyst Mid-Senior Spain 33 38 27 22
6 Analyst Junior Argentina 32 34 27 27
7 Analyst Junior Costa Rica 22 40 39 19
8 Analyst Senior Colombia 19 35 36 30
9 Analyst Junior Chile 25 29 34 32
10 Analyst Junior Spain 33 23 27 37
11 Analyst Senior Argentina 13 29 40 38
12 Analyst Mid-Senior Chile 28 34 23 35
13 Analyst Junior Spain 26 33 25 36
14 Analyst Senior Chile 16 34 29 41
15 Analyst Senior Chile 28 22 35 35
16 Developer Mid-Senior Chile 22 26 40 32
17 Developer Mid-Senior Chile 25 30 30 35
18 Developer Mid-Senior Costa Rica 19 34 34 33
19 Developer Senior Argentina 27 32 34 27
20 Developer Senior Chile 19 33 33 35
21 Developer Senior Chile 21 37 41 21
22 Developer Mid-Senior Argentina 27 22 34 37
23 Developer Junior Costa Rica 23 39 33 25
24 Developer Junior Chile 29 26 29 36
25 Developer Mid-Senior Spain 21 37 31 31
26 Developer Junior Colombia 28 29 28 35
27 Developer Mid-Senior Chile 21 36 32 31
28 Developer Junior Spain 31 26 28 35
29 Developer Senior Chile 27 33 29 31
30 Developer Senior Costa Rica 29 22 34 35
31 Developer Junior Colombia 13 40 31 36
32 Developer Mid-Senior Chile 21 30 29 40
33 Developer Senior Colombia 26 33 35 26
34 Developer Junior Chile 26 28 28 38
35 Developer Mid-Senior Argentina 21 26 31 42
36 Developer Mid-Senior Chile 29 26 39 26
37 Developer Mid-Senior Colombia 36 30 27 27
38 Developer Senior Spain 19 31 38 32
39 Developer Mid-Senior Argentina 32 28 38 22
40 Developer Junior Chile 20 32 32 36
41 Developer Senior Argentina 25 27 28 40
42 Developer Senior Chile 17 35 36 32
43 Developer Senior Argentina 19 30 42 29
44 Developer Senior Spain 33 20 33 34
45 Developer Senior Argentina 25 23 42 30
46 Developer Senior Chile 45 23 27 25
47 Developer Mid-Senior Costa Rica 30 31 34 25
48 Developer Senior Colombia 19 33 32 36
49 Developer Senior Chile 31 27 24 38
50 Developer Senior Spain 22 28 35 35
51 Developer Senior Chile 25 25 31 39
52 Developer Senior Argentina 30 36 34 20
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53 Developer Senior Costa Rica 21 31 30 38
54 Developer Senior Chile 20 32 41 27
55 Developer Senior Chile 24 34 33 29
56 Developer Senior Argentina 20 31 41 28
57 Developer Junior Chile 30 28 31 31
58 Developer Senior Argentina 27 29 37 27
59 Developer Senior Spain 21 26 37 36
60 Developer Senior Chile 28 27 28 37
61 Developer Senior Chile 25 32 32 31
62 Developer Mid-Senior Costa Rica 18 33 41 28
63 Developer Senior Argentina 28 37 30 25
64 Developer Senior Costa Rica 17 37 34 32
65 Developer Junior Chile 22 31 37 30
66 Project Manager Senior Chile 23 40 30 27
67 Project Manager Junior Argentina 20 29 35 36
68 Project Manager Mid-Senior Chile 25 34 31 30
69 Project Manager Senior Chile 21 30 36 33
70 Project Manager Senior Chile 26 44 27 23
71 Project Manager Senior Chile 20 36 40 24
72 Project Manager Senior Chile 24 40 27 29
73 Project Manager Senior Argentina 21 34 35 30
74 Project Manager Senior Chile 26 25 40 29
75 Project Manager Senior Argentina 22 30 36 32
76 Project Manager Senior Chile 27 33 33 27
77 Project Manager Senior Chile 22 32 40 26
78 Project Manager Senior Argentina 25 21 34 40
79 Project Manager Senior Costa Rica 22 38 26 34
80 Project Manager Senior Chile 19 38 39 24
81 Project Manager Senior Argentina 31 19 25 45
82 Project Manager Senior Costa Rica 32 26 37 25
83 Project Manager Senior Chile 22 21 33 44
84 Project Manager Mid-Senior Chile 23 35 28 34
85 Project Manager Senior Chile 21 33 37 29
86 Project Manager Senior Costa Rica 36 34 27 23
87 Project Manager Senior Spain 20 30 39 31
88 Project Manager Senior Chile 21 23 33 43
89 Project Manager Senior Chile 31 27 29 33
90 Project Manager Senior Argentina 34 19 37 30
91 Project Manager Senior Costa Rica 24 34 40 22
92 Project Manager Senior Chile 26 25 37 32
93 Quality Assurance Senior Spain 31 35 16 38
94 Quality Assurance Senior Costa Rica 19 31 45 25
95 Software Architect Senior Chile 28 25 36 31
96 Software Architect Senior Colombia 33 27 23 37
97 Software Architect Senior Spain 32 20 27 41
98 Software Architect Senior Chile 29 27 28 36
99 Software Architect Senior Chile 19 31 38 32
100 Software Architect Senior Argentina 20 31 41 28
101 Software Architect Senior Spain 32 26 36 26
102 Software Architect Mid-Senior Colombia 25 28 25 42
103 Software Architect Mid-Senior Costa Rica 21 41 36 22
104 Software Architect Mid-Senior Chile 22 23 35 40
105 Software Architect Mid-Senior Argentina 23 28 32 37
106 Software Architect Mid-Senior Colombia 15 30 38 37
107 Software Architect Mid-Senior Spain 24 25 32 39
108 Software Architect Mid-Senior Chile 22 28 33 37
109 Software Architect Senior Colombia 24 19 39 38
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110 Software Architect Senior Argentina 24 34 37 25
111 Software Architect Senior Spain 26 21 32 41
112 Software Architect Senior Colombia 38 18 37 27

Appendix 2 - Focus Group partial transcriptions

9.1 Participants

• Senior Consultant 1 (SC1)

• Senior Consultant 2 (SC2)

• Instructional Designer 1

• Instructional Designer 2 (ID2)

• Technical Leader 1 (TL1)

• Technical Leader 2 (TL2)

9.2 Question 1

Are the identified learning styles representative of your experience with software development teams?

• SC1: “Absolutely. From what we’ve seen, many senior developers and architects tend to be highly
analytical. They like everything to have clear data and solutions to be based on pure logic.”

• ID1: “I agree. In graduate programs, we notice that students who already have programming experi-
ence excel in activities that require abstract thinking, like when they design algorithms.”

• TL2: “Yes, it’s the most common pattern, but it’s not always the case. In QA or roles with more
collaboration, we see more variety. But for typical developers, the profile is very well defined.”

9.3 Question 2

How practical are the proposed strategies in corporate training environments?

• SC2: “We already use problem-based learning, but in a more informal way. What we find great is the
idea of integrating it with data analysis - that could be very useful for technical training.”

• ID2: “We love the structured discussion approach. Many engineers shy away from open debates, but
when they have clear objectives and guidance, they get more involved.”

• TL1: “The challenge is adapting it for virtual courses. I would add more interactive tools, like
simulators where they can program in real time.”

9.4 Question 3

What adjustments would you recommend to improve their implementation?

• SC1: “I would include pair programming dynamics so that ’Thinking’ profiles work as a team. I’ve
seen that several programmers learn better when they’re accompanied and see tangible results.”

• ID1: “The materials should be more modular. For example, specific cases for back-end versus front-end,
because their needs are different.”

• TL2: “We need to train instructors to know how to handle analytical profiles. I believe the strategies
go hand in hand with an instructor who can apply them appropriately.”
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9.5 Final Comments

Any final comments before we wrap up?

• SC2: “I agree that the “Thinking” style is well identified, but it would be interesting to expand the
study to non-technical roles, like Product Owners, to see the differences.”

• ID2: “The strategies are solid, but they need flexibility. A single team can have a mix of learning
styles.”

• TL1: “My recommendation is to prioritize adaptation for hybrid environments. That’s where the
future of training is heading.”
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