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Abstract

This study presents a novel approach that integrates Discrete Event Simulation (DES) with
Design of Experiments (DOE) techniques, framed within a stochastic optimization context
and guided by a multi-objective goal programming methodology. The focus is on enhancing
the operational efficiency of an emergency department (ED), illustrated through a real-
world case study conducted in a Chilean hospital. The methodology employs Response
Surface Methodology (RSM) to explore and optimize the impact of four critical resources:
physicians, nurses, rooms, and radiologists. The response variable, formulated as a goal
programming function, captures the aggregated patient flow time across four representative
care tracks. The optimization process proceeded iteratively: early stages relied on linear
approximations to identify promising improvement directions, while later phases applied
a central composite design to model nonlinear interactions through a quadratic response
surface. This progression revealed complex interdependencies among resources, ultimately
leading to a local optimum. The proposed approach achieved a 50% reduction in the
aggregated objective function and improved individual patient flow times by 7% to 26%.
Compared to traditional metaheuristic methods, this simulation-optimization framework
offers a computationally efficient alternative, particularly valuable when the simulation
model is complex and resource-intensive. These findings underscore the value of combining
simulation, RSM, and multi-objective optimization to support data-driven decision-making
in complex healthcare settings. The methodology not only improves ED performance
but also offers a flexible and scalable framework adaptable to other clinical environments
seeking resource optimization and operational improvement.

Keywords: simulation; optimization; emergency department; multi-objective; response
surface; goal-programming

1. Introduction

Simulation has become essential for understanding and managing complex systems,
providing an effective approach to addressing challenges posed by unknown dynamics
and highly uncertain scenarios [1]. In this context, hospitals and emergency care centers are
especially important to examine because of the inherent complexities of these facilities [2].
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Of particular interest are the emergency departments (EDs), which are essential components
of hospital care, providing immediate attention to patients with acute or life-threatening
conditions. However, their operation is often challenged by unpredictable demand, limited
resources, and the inherent urgency of emergency care. Issues such as overcrowding,
extended waiting times, and inefficient resource use have become increasingly common,
affecting not only service quality but also patient safety.

Viewed through a systems lens, EDs function as complex adaptive systems, involving
continuous interactions among diverse elements, including patients, medical staff, infras-
tructure, and clinical processes, whose interdependencies and nonlinear behaviors make
prediction and control particularly difficult. In such settings, traditional management tools
may fall short in capturing the full scope of operational complexity.

Discrete event simulation (DES) has emerged as a powerful method for analyzing
healthcare operations. It enables decision-makers to model patient flows, experiment with
resource configurations, and test performance under various scenarios without interfering
with real-world activities. Nonetheless, while simulation provides valuable insights into
system behavior, it typically lacks the ability to generate optimal solutions independently.

To bridge this gap, numerous studies have adopted hybrid simulation—optimization
frameworks. These approaches enhance the decision-making potential of simulation by
incorporating optimization techniques that can explore trade-offs and guide improvements.
Among these, Response Surface Methodology (RSM) and goal programming offer promis-
ing capabilities, particularly in handling multiple, often conflicting, objectives. Despite their
successful application in fields such as manufacturing and logistics, their use in emergency
care remains relatively underexplored.

This study contributes to addressing that gap by developing and applying a simulation—
optimization framework that integrates DES, RSM, and multi-objective goal program-
ming. The aim is to support capacity planning and performance improvement in high-
demand ED environments. The proposed methodology is implemented in a real-world
setting, a private hospital in Santiago, Chile, which is currently facing rising demand and
operational constraints.

By modeling the entire ED system and focusing on the interplay among key resources,
physicians, nurses, treatment rooms, and radiology services, this work illustrates the poten-
tial of data-driven methods grounded in systems thinking. The findings demonstrate how
integrating simulation and optimization techniques can support better resource allocation,
reduce patient flow times, and enhance the system’s resilience in the face of growing
healthcare needs.

2. Literature Review
2.1. Systems Simulation

For decades, simulation has played a crucial role in representing or imitating the be-
havior of real systems or processes, often using mathematical or computational models [3],
where the advent of increasingly powerful computers has facilitated the expansion of simu-
lation to various fields [4]. In particular, the application of Discrete Event Simulation (DES)
has gained increasing relevance in emulating systems due to its ability to represent the
stochastic nature, resource limitations, and process complexity inherent in diverse services
and their operation [5]. By enabling virtual experimentation, DES provides decision-makers
with a powerful tool to evaluate operational bottlenecks, test improvement strategies, and
assess resource allocation without disrupting real operations. Its flexibility has led to its use
across a broad spectrum of healthcare areas. In chronic disease modeling, Willis et al. [6]
developed and validated a DES model to simulate the progression of diabetic kidney
disease using clinical trial data from CREDENCE study (Canagliflozin and Renal Events
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in Diabetes with Established Nephropathy Clinical Evaluation). This model allowed the
evaluation of long-term treatment strategies and healthcare resource usage, demonstrating
how simulation can support decision-making in complex, long-term conditions. Similarly,
in acute care access, Soorapanth & Young [7] applied DES to assess the impact of expanding
access to thrombolytic therapy for stroke patients, quantifying the clinical and economic
benefits of improvements in triage and coverage. Similarly, Ramis et al. [8] presented a
simulator for a hospital’s medical imaging center. Their simulations resulted in reduced
waiting times and increased utilization of imaging equipment. Pharmacy service delivery
has also benefited from the use of simulation, where Furushima et al. [9] modeled the
operations of a high-demand outpatient dispensing pharmacy in Japan, analyzing the
effect of implementing one-dose packaging. Their results indicated that this operational
change significantly reduced patient waiting times and improved resource utilization. In
the context of specialized outpatient care, Lacinova et al. [10] presented the ENTIMOS
model to enhance infusion suite efficiency for patients undergoing treatment for multiple
sclerosis. The simulation examined the impact of changes in scheduling and staffing levels
on patient flow and treatment delays, providing valuable insights into capacity manage-
ment in chronic disease care settings. DES has also proven helpful in supporting blood
center logistics. In this context, Baesler et al. [11] modeled the operational processes of a
regional blood center, with a focus on internal operations. Their study demonstrated that
with improved scheduling and resource coordination, the center could meet a doubling in
demand without infrastructure expansion, highlighting DES as a powerful tool for strategic
planning in support services.

2.2. Emergency Department Simulation

Building on its success across healthcare settings, DES has become particularly promi-
nent in emergency department (ED) research, where managing variable patient arrivals,
limited resources, and urgent care demands pose significant challenges. Numerous studies
have demonstrated the capacity of DES to model the intricate dynamics of ED operations.
Angler et al. [12], for instance, highlight the strong potential of DES for evaluating ED
performance, while also emphasizing the growing importance and challenges of integrat-
ing artificial intelligence into process improvements. Abo-Hamad & Arisha [13] further
extended this approach by integrating DES with a balanced scorecard and multi-criteria
decision analysis to create a comprehensive decision support framework for ED manage-
ment. Additionally, Wang et al. [14] investigated the influence of physician behavior on
ED performance, revealing how provider decisions significantly affect patient outcomes
and system efficiency. Additional recent contributions can be found in Castanheira-Pinto
et al. [15] and Delos Reyes et al. [16], who offer updated perspectives on emergency depart-
ment modeling. Additionally, a comprehensive review of simulation methods applied to
emergency departments is available in Doudareva & Carter [17], who provide a thorough
overview of validation techniques and methodological developments in the field.

2.3. Simulation Optimization in HealthCare

The integration of Discrete Event Simulation (DES) with optimization techniques
has significantly broadened its applicability in healthcare decision-making, particularly
in environments characterized by high uncertainty and resource constraints. Hybrid
simulation—optimization models have emerged as powerful tools for addressing complex
planning and operational challenges across a wide range of healthcare settings. For instance,
Dehghanimohammadabadi et al. [18] combined DES with simulated annealing to solve
intricate scheduling problems in a breast cancer treatment center, demonstrating how this
approach can enhance oncology care planning. More recently, Yan et al. [19] employed DES
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in conjunction with a genetic algorithm to optimize rehabilitation service capacity for stroke
patients in Alberta, Canada. Their model effectively identified optimal capacity expansions,
achieved significant reductions in patient waiting times across multiple segments, and
led to an estimated annual cost saving of $25.5 million, underscoring the economic and
operational potential of such hybrid frameworks in post-acute care.

In the domain of primary care, Vdzquez-Serrano et al. [20] developed a hybrid model
that integrates DES with optimization to minimize patient wait times and ensure timely
treatment for high-risk individuals. Their results demonstrated a dramatic reduction of
up to 90% in average wait times, while ensuring that all priority patients were treated
without delay. This finding reinforces the value of simulation-optimization approaches in
improving access and service efficiency at the primary care level. In the context of healthcare
crisis management, De Santis et al. [21] proposed a hybrid DES-optimization framework
to assess ED performance under extreme demand scenarios. Their model was able to
determine the maximum patient volume the system could sustain before collapsing and
identify optimal resource configurations to maintain resilience, offering valuable insights
for emergency preparedness and capacity planning.

Emergency care has also benefited from the application of metaheuristic algorithms
within simulation models. For example, Ramirez-Nafarrate et al. [22] applied genetic
algorithms to streamline ambulance diversion processes by minimizing non-value-added
activities, thereby improving emergency medical logistics. Similarly, Yeh & Lin [23] inte-
grated DES with genetic algorithms to optimize nurse scheduling, achieving improved
service quality without the need to increase staffing levels. On the other hand, Ahmed &
Alkhamis [24] implemented a DES-based optimization framework to reduce delays and
enhance patient flow in a Kuwaiti ED. Weng et al. [25] combined DES with the OptQuest
engine to optimize resource allocation, guided by performance indicators such as the
National Emergency Department Overcrowding Scale (NEDOCS). A different approach,
which includes machine learning, is presented by Hosseini-Shokoubh et al. [26], who intro-
duced an integrated framework that combines DES, artificial neural networks (ANN), and
a fractional genetic algorithm to enhance emergency department operations in Iran. By
simulating various staffing and equipment scenarios, they nearly eliminated triage wait
times and reduced screening delays by approximately 159 min, while achieving 69% and
84% utilization in critical service units.

Together, these studies demonstrate the increasing maturity and versatility of
simulation—optimization frameworks in healthcare. By combining the descriptive power
of DES with the prescriptive capabilities of optimization techniques, particularly meta-
heuristics, these models provide robust, data-driven support for improving service de-
livery, reducing inefficiencies, and enhancing system resilience across various levels of
healthcare provision.

2.4. Simulation Design of Experiments and Response Surface Methodology

Despite the proven effectiveness of simulation and optimization techniques in health-
care, incorporating Design of Experiments (DOE) and Response Surface Methodology
(RSM) offers an additional and powerful avenue for addressing complex optimization prob-
lems. RSM has demonstrated considerable potential in capturing nonlinear relationships
and identifying optimal conditions with relatively few experimental runs compared to
metaheuristic approaches. While its application in healthcare remains limited, RSM has
been widely adopted in other domains. For instance, Zhang & Brown [27] applied it to
optimize police patrol districting strategies, while Dengiz & Belgin [28] used it to enhance
efficiency in multi-stage manufacturing systems. In the context of inventory management,
Dellino et al. [29] integrated RSM with simulation and Taguchi methods to improve system



Systems 2025, 13, 912

50f25

performance under uncertainty. Additionally, Yalcinkaya & Bayhan [30] employed RSM
to optimize metro travel times while maintaining appropriate carriage occupancy, and
Zhang et al. [31] leveraged it to evaluate the effectiveness of dispatching rules in semi-
conductor manufacturing. Some progress has been made in extending RSM to uncertain
and nonlinear systems. Da Silva et al. [32] introduced a new RSM variant that incorpo-
rates uncertainty in parameter estimation, while Fu et al. [33] combined DES, sensitivity
analysis, and fractional factorial design to optimize the deployment of automated guided
vehicles (AGVs).

In the context of healthcare, relatively few studies were found that integrate simula-
tion with DOE or RSM. Gjerloev et al. [34] present a review of the design of experiments
with discrete event simulation where less than 8% of the articles belong to the healthcare
industry. Some examples can be found in Sun & Li [35], where they optimized surgery
start times using this hybrid method. On the other hand, Barnes et al. [36] used a factorial
design to investigate the impact of hand hygiene compliance and staffing levels on Inten-
sive Care Unit’s infection transmission. Recently, Al-Hawari et al. [37] applied DES and
RSM to optimize patient throughput, staff utilization, and stay duration in an outpatient
endocrine clinic.

However, when focusing specifically on emergency care, the integration of Discrete
Event Simulation (DES) with Design of Experiments (DOE) and Response Surface Method-
ology (RSM) appears even less common. One contribution in this area was conducted by
Baesler et al. [38], who combined DES and DOE to estimate the maximum patient demand
that a private emergency department could accommodate, providing critical insights into
capacity constraints under varying resource configurations. Zeinali et al. [39] also explored
simulation-based metamodeling techniques to support resource planning in an Iranian
ED; however, their work did not delve deeply into the application of RSM itself. A more
recent example conducted by Atalan & Dénmez [40] highlights the practical benefits of
this integration; by applying DOE in conjunction with DES, they managed to reduce the
average patient waiting time in a small emergency department from 40.09 to 9.83 min, an
impressive 75.5% improvement. These studies, although limited in number, underscore the
significant potential of combining simulation and experimental design methods to address
complex operational challenges in emergency healthcare settings.

This review reveals a clear opportunity to expand the use of RSM in emergency
simulation. The present study contributes to bridging this gap by applying DES and
RSM to optimize resource allocation in a Chilean emergency department, by adopting a
multi-objective approach focused on minimizing patient flow time. The study highlights
the practical relevance of combining simulation, DOE, and RSM in addressing real-world
operational challenges in emergency care.

3. Materials and Methods
3.1. Case Study

The emergency department analyzed in this study corresponds to the adult emergency
unit of a private hospital located in Santiago, the capital of Chile. This unit plays a cru-
cial role in the hospital’s healthcare delivery system, handling approximately 6000 adult
patients per month. It is equipped with 30 examination rooms and supported by a mul-
tidisciplinary clinical team composed of 9 physicians, 8 nurses, and 10 nurse technicians,
all working under varying schedules. Diagnostic imaging services, including five X-ray
machines, three scanners, and three MRI machines, are shared across three patient cate-
gories: inpatients, scheduled imaging patients, and emergency cases, adding complexity
to equipment scheduling and resource allocation. The general patient flow diagram is
presented in Figure 1.
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Figure 1. General Patient Flow Process.

The diagram shown in Figure 1 illustrates the patient’s journey through the emergency
department, encompassing clinical, diagnostic, and support processes. When patients
arrive, they undergo registration and triage, during which their clinical urgency is assessed.
Based on the triage results, they move to the physician examination stage, where medical
evaluation and diagnostic orders are determined. Depending on the clinical case, patients
may receive nursing care or be referred to diagnostic areas such as imaging or labs. The
imaging process involves exams such as X-rays, CT scans, MRIs, and echocardiography,
which are then interpreted and reported by a radiologist. Laboratory tests follow a similar
flow, from sample collection to reporting results. Once all diagnostic results are available,
the physician re-evaluates the patient and decides on the next step, either discharge with
instructions or admission to a hospital bed. Throughout the process, patients may experi-
ence waiting times due to resource availability, reflecting typical operational constraints in
emergency services.

The arrival rate of emergency patients follows a non-stationary pattern, with peak
inflows observed around 10:00 a.m., particularly on Mondays. This pattern was derived
from historical data available in the hospital’s database and is depicted in Figure 2.

N° patients

300 1 . = Sunday
250 1 ® Monday
20.0 1 ® Tuesday
15.0 ® Wednesday
10.0 m Thursday
5.0 1 Friday

0.0 - M Saturday

P o P S P D D
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Figure 2. Emergency Department Patient Arrival Rate.
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The arrival process was modeled as a non-stationary Poisson process (NHPP) with
a piecewise constant rate function A(t), estimated from the hospital’s historical arrival
data. Specifically, patient arrivals were aggregated by hour for each day of the week,
and the observed mean arrival rates were used to define the corresponding A(t) segments.
This approach captures the temporal variability of patient inflows—particularly the morn-
ing and early-week peaks—while maintaining analytical tractability in the simulation
model. The choice of a Poisson process is consistent with previous studies in emergency
department modeling.

To manage patient flow efficiently, the hospital identified 33 distinct patient tracks,
each representing a predefined sequence of clinical activities required for diagnosis and
treatment. These tracks may include physician consultations, nursing interventions, di-
agnostic imaging, laboratory testing, and specialist evaluations. A statistical analysis of
historical records was conducted to determine the frequency of each track, allowing for a
probabilistic representation of patient tracks in the simulation model. Upon arrival, each
patient is assigned to a track based on these empirical probabilities, which guide their
progression through the department and determine the resources involved at each stage.
As an illustration, three representative tracks are provided below:

- Physician consultation — treatment — laboratory exam — physician reevaluation
— discharge

- Physician consultation — specialist consultation — treatment — laboratory exam —
CT scan — physician reevaluation — discharge

- Physician consultation — X-ray — physician reevaluation — medical procedure
— discharge

As part of the data collection process for simulation model development, a time study
was conducted over a two-week period within the emergency department to measure the
duration of key clinical activities. A total of 50 observations were recorded on-site, capturing
the timing of physician and nursing procedures. Additionally, 70 records were extracted
from the hospital’s imaging services database to quantify the time required for imaging-
related activities among emergency patients. These two datasets, along with the estimated
probabilities of track assignment, provided the empirical foundation for modeling patient
flow and resource utilization in the discrete event simulation environment.

Table 1 lists the set of activities incorporated into the model, along with their fitted sta-
tistical distributions expressed in minutes. The Kolmogorov-Smirnov goodness-of-fit test,
applied at a 95% confidence level, confirmed that all selected distributions adequately rep-
resent the underlying data (p-values > 0.05). This combination of direct time measurements,
historical records, and probabilistic track modeling ensured a realistic and data-driven
simulation of emergency department operations.

Table 1. ED Activity Distributions.

Activity Distribution Parameter Specification (Units = Minutes)
Physician exam Lognormal (12.71, 0.46) (scale, shape) form

Nurse treatment Erlang (1.38, 10) (mean per phase, shape k) form

Nurse technician treatment Lognormal (4.89, 0.29) (scale, shape) form

X-ray exam Lognormal (5.61, 0.43) (scale, shape) form

Scanner exam Lognormal (11.36, 0.59) (scale, shape) form

Echotomography exam 6.46 + Weibull (23.29, 1.94) Offset of 6.46 plus Weibull (scale, shape)
MRI exam Lognormal (30.88, 0.52) (scale, shape) form

Waiting time for a specialist 2.94 + Weibull (56.6, 1.37) Offset of 2.94 plus Weibull (scale, shape)
Radiologist exam interpretation Triangular (15, 25, 50) (min, mode, max) form

Laboratory exam Uniform (45, 70) (min, max) form
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The inherent complexity of this emergency unit, stemming from fluctuating demand,
shared resources, and heterogeneous patient needs, motivated the development of a
simulation-based optimization study. Based on the operational information and process
data described above, a discrete-event simulation model was developed using FlexSim
19.1.0 Healthcare, representing the main patient flow, resource interactions, and service
constraints. The aim was to determine optimal resource configurations that minimize
patient flow time while maintaining service quality, particularly under a projected 40%
increase in demand.

3.2. Methodology

In anticipation of a projected 40% increase in demand resulting from the planned
expansion of services, the hospital initiated a strategic study aimed at identifying the
optimal combination of resources to manage this growth effectively. The goal was to de-
termine the most efficient resource configuration that could minimize patient flow times
under these future operational conditions, thereby ensuring that quality of care and service
levels are maintained despite the anticipated rise in patient volume. Although this is a
single-objective problem, a multi-objective approach was taken because patient tracks may
respond differently to changes in resources. For instance, adding an X-ray machine may
affect the flow time of some patient tracks but not others. Among the 33 patient care tracks
identified in the emergency department, a detailed frequency analysis revealed that 10 of
these tracks account for approximately 80% of the total patient population. This distribution
aligns with the Pareto principle, indicating that a relatively small subset of care pathways
accounts for a significant portion of the demand for clinical resources. To ensure model
tractability and focus the optimization on the most impactful scenarios, the simulation
and optimization framework was therefore restricted to these 10 high-frequency tracks.
To further streamline the optimization process and reduce computational complexity, a
correlation analysis was conducted among the ten most frequent patient tracks, which to-
gether represent approximately 80% of the emergency department’s demand. The purpose
of this analysis was to identify potential redundancies among the performance metrics,
specifically patient flow times associated with each track. If certain tracks exhibited strong
statistical correlations, it would be reasonable to assume that improvements in one could
reflect improvements in others, thus allowing for aggregation or elimination of redundant
objectives in the multi-objective optimization model.

The results of this analysis are summarized in Table 2, which presents the Pearson
correlation matrix of flow times across the ten selected tracks. A threshold of 0.7 or higher
was used to determine strong positive correlations, indicating a high degree of similarity in
flow time behavior between tracks.

Table 2. Correlation Matrix.

Track 1 2 3 4 5 6 7 8 9 10
1 1.00
2 0.47 1.00
3 0.77 0.29 1.00
4 0.55 0.71 0.53 1.00
5 0.44 —0.06 0.43 0.28 1.00
6 0.57 0.12 0.68 0.45 0.62 1.00
7 0.72 0.07 0.71 0.56 0.77 0.70 1.00
8 0.50 -0.07 0.50 0.26 0.18 0.22 047 1.00
9 0.12 0.18 0.14 0.41 0.49 0.24 0.30 -0.07 1.00

—
o

0.07 0.00 0.17 0.20 0.32 0.18 0.24 0.05 0.81 1.00
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Based on the threshold considered (r > 0.7), the following groups of highly correlated
tracks were identified:

e  Track 7 showed strong correlations (r > 0.7) with Tracks 1, 3, 5, and 6, suggesting that
these five tracks could be effectively represented by Track 7.

e  Track 4 was highly correlated with Track 2.

e Track 9 and Track 10 are highly correlated and can therefore be represented by a
single track.

Notably, Track 8 did not exhibit strong correlations with any other track, indicating that
its flow time dynamics are unique and cannot be explained by the dynamics of other tracks.
As a result, it must be included explicitly as an independent objective in the optimization.

Consequently, the number of objectives was reduced from ten to four representative tracks:

Track 7 (representing Tracks 1, 3, 5, and 6)
Track 4 (representing Tracks 2 and 4)

Track 9 (representing Tracks 9 and 10)

Track 8 (unique behavior, retained independently)

This dimensionality reduction approach helped preserve the diversity of patient tracks
while making the multi-objective optimization problem more tractable, enabling more
efficient exploration of the design space.

The process of narrowing down the ten most common patient tracks to four key ones
was not just a statistical task. Although correlation analysis was used to spot redundancies,
the grouping was later reviewed and approved by the hospital’s clinical team. Impor-
tantly, the tracks that were combined shared common resources and similar operational
processes (such as physicians, diagnostic imaging, or treatment rooms), which helped
keep the clinical logic of patient flows intact. This step ensured that the simplified model
remained medically relevant and accurately depicted the decision-making environment of
the emergency department.

3.2.1. Multi-Objective Approach

To address the performance of the emergency department under increased demand,
this study adopted a goal programming (GP) approach to minimize patient flow times
across the four representative patient tracks identified in the correlation analysis. Goal
programming is particularly suitable in multi-objective healthcare environments, where
multiple conflicting objectives such as reducing delays for different patient types must be
managed simultaneously.

The structure of the GP model consists of an objective function that minimizes the
weighted sum of deviations from predefined targets (goals) and a set of goal constraints for
each track. The model can be mathematically expressed as shown in Equation (1):

N 7 ote 4 71,
Min f— y @il wipi
i=1 b;

st. E(xj))+mnj—pi=b;i=12,...,N

1)

where f represents a global performance measure that combines multiple objectives related
to patient flow time on different tracks, minimizing f is equivalent to minimizing the
weighted deviations of flow times, which means improving the overall system perfor-
mance, N = number of objectives, E(x;) = expected flow time value for the patient track i,
w; = weight for objective i, n; = negative deviation from goal i, p; = positive deviation from
goal i, and b; = goal for objective i (desired flow time).

Since a negative deviation represents a value even smaller (shorter flow time) than the
goal, b; and n; were eliminated. In this study, the goal programming model was based on
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current flow times observed in the emergency department rather than normative targets.
This choice was made for two main reasons. First, the empirical flow times provided a
realistic and consistent baseline that accurately reflected the hospital’s actual operating
conditions, resource constraints, and patient mix complexity. Using these data ensured that
the optimization model remained grounded in the system’s current capacity and variability.
Second, normative goals such as those proposed by MINSAL are generally designed for
public healthcare systems and may not directly apply to the operational dynamics of
private emergency departments. However, the proposed framework can easily incorporate
normative or policy-driven targets as goal parameters if available or needed in future
applications. Therefore, selecting current flow times was intended to establish a data-driven
baseline while maintaining flexibility for adaptation to different institutional or policy
contexts. Table 3 presents the parameters for each of the four objectives, along with the new
flow time goals under increased demand conditions. Some successful applications of goal
programming in healthcare can be found in the literature. For instance, Kwak & Lee [41]
employed a linear goal programming model for human resource planning in a healthcare
organization, optimizing staffing levels while balancing cost-efficiency and patient service
coverage. A successful application of goal programming in healthcare was presented by
Rehman et al. [42], who integrated it with discrete-event simulation to optimize resource
allocation in a public hospital’s emergency department, achieving a 61.7% reduction in
patients leaving without being seen and significantly decreasing wait times.

Table 3. Patient Flow Time and Percentage.

Type of Patient Flowtime Goal (Mins.) Percentage (%)
Flowtime Track 1 130 112
Flowtime Track 2 185 63.7
Flowtime Track 3 210 6
Flowtime Track 4 78 19.1

The goal programming objective function is defined by the structure shown in

Equation (2).
— (FT1 —130) (FT2 — 185) (FT3 —210) (FT4—-78)
Min Z = 0.1127130 + 0.6377185 + 0.067210 +0.191 g (2)

where FT; is the variable that represents the flow time for patient type i. The function is
standardized by dividing each objective by the goal value. Each objective is multiplied by
the percentage of patients for that particular track to represent the weight for each type of
patient in the whole objective function.

3.2.2. Response Surface Methodology

To optimize the performance of the emergency department, we adopted the Response
Surface Methodology (RSM), a technique introduced by Box & Wilson [43], which has
proven effective in exploring complex systems influenced by multiple variables. RSM
helps approximate the relationship between decision variables and system performance,
allowing us to iteratively refining solutions based on simulation results.

In our study, the discrete event simulation model serves as a virtual representation of
the emergency department, capturing the dynamic behavior of patient flows and resource
usage. Using a structured Design of Experiments (DoE), we selected specific configurations
of resource levels, such as the number of physicians, nurses, or exam rooms, and evaluated
their impact on patient flow time through simulation. These results were then used to fit a
simplified mathematical model of the system'’s response.
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The process began with a linear approximation of the response surface, enabling the
estimation of the direction in which improvements were likely to be found. Based on this
gradient, we gradually adjusted the input variables and repeated the simulations. Once
enough data points had been gathered, a second-order (quadratic) model was fitted to
capture the curvature of the response surface better and identify a near-optimal region.
Figure 3 illustrates this iterative optimization cycle.

Simulate
experimental
points

Linear regression
surface
approximation

Define new set of
experiments

Find optimum

Follow gradient
until no further
improvement

Fit quadratic

Fit linear model?
model

Gradient Yes
estimation

Figure 3. Response Surface Methodology Optimization Process.

For additional methodological background on simulation combined with RSM, see
Law [44].

4. Results

In this study, a full factorial experimental design with two levels was employed to
investigate the impact of key resources on emergency department performance. Specifically,
four critical resources were selected as experimental factors: physicians (A), nurses (B),
exam rooms (C), and radiologists (D). These factors were identified based on preliminary
bottleneck analyses and consultations with hospital management, who highlighted them
as the most impactful resources on patient flow. Other resource categories were excluded
from the design due to their observed surplus capacity during peak demand scenarios.

Choosing only four factors was also a deliberate methodological decision to keep the
design of experiments (DoE) computationally feasible. In the context of discrete event
simulation, each experimental condition corresponds to a complete simulation scenario,
requiring multiple replications to achieve statistical validity. Including more variables
would exponentially increase the number of scenarios and simulation time, rendering the
analysis impractical due to resource constraints.

To conduct the analysis, we used a full 2* factorial design, which involved 16 core
simulation runs to cover all possible combinations of the chosen resource levels. To better
capture potential nonlinearities and enhance the reliability of the results, we included four
center points, bringing the total number of scenarios to 20. Each scenario was run 15 times,
with each run comprising a 1-day warm-up period followed by 5 full days of observable
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emergency department activity. The warm-up period was determined through preliminary
testing, showing that the system reached steady-state operation within the first simulated
day, preventing transient effects from skewing the results. The number of replications was
arrived at via additional pilot tests to achieve a 5% precision level in the confidence interval
of the response variable. This setup allowed for the estimation of the main response
variable, the goal programming function, which integrates the flow times of the four
key patient pathways with 95% confidence. This process ensured that the conclusions
from the experiments were both reliable and statistically valid. An analysis of variance
(ANOVA) was employed to assess the significance of main effects and interaction terms at
each experimental stage. Residual diagnostics were carried out to verify compliance with
statistical assumptions, including normality, independence, and homogeneity of variances.
This approach confirmed that the relationships among factors were statistically valid and
not due to random variation.

The decision to implement a full factorial design was guided by the need for a com-
prehensive and transparent exploration of the effects and interactions between the selected
critical resources, physicians, nurses, rooms, and radiologists, on the performance of the
emergency department. While alternative experimental designs, such as fractional factori-
als, Plackett-Burman, or Box-Behnken, could reduce the number of required simulation
runs, they also risk overlooking higher-order interactions or confounding effects, especially
in systems as complex and interdependent as hospital operations. In this study, the number
of factors was deliberately limited to four, based on expert input from hospital management
and prior bottleneck analyses, which identified these resources as the most impactful on
patient flow. This constraint allowed the use of a full factorial design to remain computa-
tionally feasible, even with the inclusion of replications, while offering the advantage of
capturing all main effects and interaction terms without ambiguity. This level of detail was
essential for developing a reliable surface approximation in subsequent response surface
modeling steps.

4.1. Initial Conditions

The first step in the optimization process is to define the experimental design’s starting
point. The experimental design model for this study centers on the current hospital
configuration shown in Table 4.

Table 4. Current Configuration of Hospital Resources.

Factor Resource Initial Solution
.. 3(24h)
A Physicians 6 (12 h)
3(24h)
B Nurses 5 (12 h)
C Rooms 30
D Radiologists 2850 min per day

To enable a standardized comparison across resources, physician and nurse staffing
levels were converted into 12 h shift equivalents, assuming that one 24 h staff member
equals two 12 h staff members. This transformation facilitates the design of experiments by
aligning units of analysis.

Radiologists have non-standardized schedules. Some are hired for a few hours daily,
while others work entire shifts. Therefore, this resource is represented in the radiologists’
available minutes daily.
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The current configuration of physicians, nurses, rooms, and radiology time was de-
fined as the center point (level 0) in the factorial design. Based on hospital managerial input
and operational constraints, high (+1) and low (—1) levels were established to represent
feasible variations in resource allocation. These values are presented in Table 5.

Table 5. Factorial Design Levels.

Factor

Resource Low Level (—1) Initial Solution (Level 0) High Level (+1)

A

Physicians

2(24h)+4(12h) 3(24h)+6(12h) 4(24h)+8(12h)
=10 equiv. =12 equiv. =14 equiv.

B

Nurses

2(24h)+4(12h) 3(24h)+5(12h) 4(24h)+6(12h)
=9 equiv. =11 equiv. =13 equiv.

C

Rooms 28 rooms 30 rooms 32 rooms

D

Radiologists” time 2600 min/day 2850 min/day 3100 min/day

All the simulations were run with 40% additional patient demand. Table 6 presents the
mean results of this scenario for the four central points and the goal for each patient track.

Table 6. Current Hospital Scenario with Demand Expansion (level 0).

Flowtime Base Scenario
(Mins.)

Flowtime Track 1 176 130
Flowtime Track 2 235 185
Flowtime Track 3 295 210
Flowtime Track 4 108 78

Type of Patient Flowtime Goal (Mins.)

4.2. Experimental Design and Linear Approximations

Using the current hospital configuration as the central point, the other 16 scenarios
were simulated to perform the surface estimation. Table 7 shows the results of the complete
design. The Z value represents the response variable corresponding to the aggregated
goal programming function obtained from the four patients’ flow times, and FT1 to FT4
represent the corresponding Flowtime Tracks 1 to 4.

Using the results of the 20 simulation scenarios generated through the 24 full factorial
design with added center points, a first-order linear regression model was fitted. This
model, derived directly from the structured experimental design, regresses the response
variable z on the main factors and their two-way interactions, enabling the estimation of
both individual and joint effects of each resource on the system’s performance. Equation (3)
presents the general form of the regression model. All statistical analyses and design of
experiments were performed using the statistical software Statgraphics Centurion 17.0.

Z=Po+PaA+PgB+pBcC+pPpD+PapAB+ Pac AC+ Bap AD + Bpc BC + Bpp BD + Bcp CD 3)

where

Z is the response (goal programming value),

A, B, C, and D are coded levels of the four factors,

(o is the intercept,

[3; are the coefficients associated with each factor and interactions.

The linear regression model that was obtained and presented in Equation (4),

y = 0.334 4- 0.002A — 0.014B — 0.058C — 0.048D + 0.003AB — 0.003AC +- 0.013AD + 0.009BC + 0.018BD + 0.03CD (4)
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Table 7. Full Factorial Design for Experiment 1.

A B C D

Scenario (Doctors) (Nurses) (Rads) (Rooms) FT1 FT2 FT3 FT4 z
1 1 1 1 1 199 282 378 110 0.52
2 1 1 -1 -1 203 274 361 118 0.51
3 1 -1 1 1 195 259 322 113 043
4 1 -1 -1 -1 190 270 310 109 0.45
5 1 1 -1 1 192 247 310 105 0.36
6 1 1 -1 -1 178 233 301 104 0.3
7 1 -1 -1 1 178 231 286 106 0.29
8 1 -1 -1 -1 182 221 288 105 0.26
9 1 1 1 1 168 240 284 113 0.33
10 1 1 1 1 169 240 283 114 0.33
11 -1 -1 -1 1 173 231 298 110 0.3
12 1 -1 1 1 172 237 281 116 0.33
13 -1 1 -1 1 171 215 285 102 0.22
14 1 1 -1 1 169 233 292 102 0.28
15 -1 -1 -1 1 172 227 280 105 0.27
16 1 -1 -1 1 170 229 273 115 0.29
17 0 0 0 0 171 232 284 110 0.3
18 0 0 0 0 178 236 300 104 0.31
19 0 0 0 0 172 235 302 108 0.31
20 0 0 0 0 185 235 296 108 0.32

The ANOVA analysis yields an R-squared value of 0.95, indicating an excellent linear
fit for the model. The resulting regression coefficients, along with their corresponding
p-values, are presented in Table 8. The number of rooms and radiologists is significant, as
are factors C and D, as well as their interaction. The interaction BC is slightly substantial.
The improvement direction is mainly a combination of the variables C and D. The Pareto
Chart is presented in Figure 4.

Table 8. Regression Coefficients for Experiment 1.

Factors Coefficients p-Value
Intercept 0.334 9.4 x 10713
A 0.002 0.763
B —0.014 0.060

C —0.058 1.1 x 107
D —0.048 5.6 X 107°

AB 0.003 0.633
AC —0.003 0.628
AD 0.013 0.093
BC 0.009 0.222
BD 0.018 0.025

CD 0.030 0.002
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Figure 4. The Pareto Chart for Experiment 1.

The gradient of this linear surface is estimated, and experiments (simulation scenar-
ios) in that direction (more rooms and more radiologists) were performed until no more
improvement was achieved. To guide the optimization process, the step size for each
resource was defined in practical, operationally meaningful units. These units represent
realistic increments based on hospital capacity and scheduling constraints. The following
increments were used for each factor:

e  Physicians (A): One unit corresponds to the addition of a 12 h physician shift.

e  Nurses (B): Similarly, one unit represents a 12 h nurse shift.

e Rooms (C): A step of 0.5 corresponds to the equivalent of adding a room for 12 h (i.e.,
partial-time room availability).

e Radiologists (D): Since radiologist availability is not standardized—some work partial
shifts, others full days, this resource was quantified in available minutes per day. One
step corresponds to an increment of 300 min of radiologist time.

The optimization proceeded in the direction indicated by the steepest descent of
the fitted linear surface, which corresponded to the most statistically significant factors:
rooms and radiologists. To follow the gradient, a proportional approach was used to guide
resource adjustments based on the estimated regression coefficients.

For instance, the regression coefficients for rooms (C) and radiologists (D) are —0.058
and —0.048, respectively. This indicates that room availability has approximately a 21%
greater impact on the objective function than radiologist availability. Therefore, by fixing
the step for rooms at 0.5 units, the corresponding step for radiologist availability was
adjusted proportionally using the ratio of coefficients 300 * (1 — 0.21) ~ 249 min.

This adjustment ensured that each gradient step respected the relative contribution
of each factor to the system’s performance while remaining feasible in practical terms.
Because room increments are discrete (0.5 units), we opted to use this as the base step and
scale radiologist availability accordingly. This gradient-based approach allowed for an
efficient and interpretable search for improvements aligned with hospital constraints.

The iterative optimization process was terminated when a subsequent step in the
gradient direction resulted in no further improvement, in fact, a slight deterioration in the
value of the goal programming objective function. This finding suggests that the search
had reached a local optimum within the evaluated experimental region, beyond which
additional resource increments no longer contributed meaningfully to system performance.

Table 9 shows these experiments (scenarios) with the resulting flow time (FT) for each
patient track and the z value representing the aggregated goal programming objective
function to be minimized. As shown in the table, improvements continued up to the third
scenario, after which Z began to increase.
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Table 9. Search Process for Experiment 1.

Scenario FT1 FT2 FT3 FT4 y4
1 175 233 295 108 0.30
2 182 226 317 89 0.244
3 175 218 299 98 0.227
4 194 240 323 99 0.328

4.3. Iterative Optimization Process

As the next step in the process, a second full factorial experiment was designed and
executed, this time centered around Scenario 3 from Table 9. The purpose of this new
experiment was to refine the approximation of the response surface by fitting a more
accurate model in the region of interest, where previous results indicated a promising local
optimum. This design required running a new set of simulation scenarios to capture the
system’s behavior with greater precision. Equation (5) presents the updated regression
model derived from this second design.

y = 0.33 —0.035A — 0.006B — 0.013C — 0.004D + 0.026 AB + 0.015AC + 0.004AD + 0.019BC + 0.008BD — 0.002CD (5)

The ANOVA analysis shows a value of 0.6. From the regression coefficients table
resumed in Table 10 and the Pareto Chart presented in Figure 5, it is possible to see that the
only significant factor is the number of physicians.

Table 10. Regression Coefficients for Experiment 2.

Factors Coefficients p Value
Intercept 0.331 9.7 x 10710
A —0.035 0.038
B —0.006 0.674
C —0.013 0.386
D —0.004 0.774
AB 0.026 0.105
AC 0.015 0.336
AD 0.004 0.799
BC 0.019 0.227
BD 0.008 0.575
CD —0.002 0.868
A:Doctors | [N | e+
AB | | | [
BC | | |
ac | | ]
C:Rooms | [
eo [ [ ]
B:Nurses _
D:Rads -
a0 | [
co | N

0 0.5 1 1.5 2 25

Figure 5. The Pareto Chart for Experiment 2.
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A search process followed the gradient direction (increased number of physicians).
The results are shown in Table 11. Improvement is possible until the third scenario; after
that, Z increases.

Table 11. Search Process for Experiment 2.

Scenario FT1 FT2 FT3 FT4 z
1 168 220 287 97 0.222
2 176 222 311 88 0.220
3 175 221 303 89 0.216
4 175 234 307 90 0.265

A third design was conducted, with scenario 3 of experiment 2 as the central point.
The resulting regression model is shown in Equation (6).

y =0.27+0.01A 4 0.01B — 0.05C 4+ 0.03D — 0.0001AB + 0.0024AC — 0.01AD — 0.001BC + 0.01BD — 0.02CD  (6)

The ANOVA results shown in Table 12 and Figure 6 indicate that rooms (C) and radiol-
ogists (D) are the most influential resources in reducing the value of the goal programming
objective function. Both show statistically significant effects, and their interaction (CD) is
also significant. This finding means that the impact of increasing one of these resources
depends on the level of the other.

Table 12. Regression Coefficients for Experiment 3.

Factors Coefficients p-Value
Intercept 0.27 3.30 x 10712
A 0.01 0.234
B 0.01 0.156
C —0.05 2.40 x 10~°
D 0.03 0.001
AB —0.0001 0.983
AC 0.0024 0.714
AD —0.01 0.231
BC —0.001 0.843
BD 0.01 0.121
CD —0.02 0.005
C:Rooms [
cD /| -
o [
B:Nurses |:|
A:Doctors |:|
»o | [
AC D
BCc | []
AB |
0 2 4 6 8

Figure 6. The Pareto Chart for Experiment 3.
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It is interesting to note that the individual effect of radiologists (D) is positive, which
would typically suggest that adding more radiologist time worsens system performance.
However, the interaction between rooms and radiologists (CD) is negative, indicating that
when both resources are increased together, their combined effect improves performance.
This result highlights the importance of considering interactions, not just individual effects,
when optimizing resource configurations.

For this reason, the optimization process moved in a direction that combined increases
in both rooms and radiologist availability. Rather than adjusting them independently, the
changes were made in proportion to their relative impact, as captured by the regression
coefficients. This approach allowed for a more effective and balanced exploration of
improvement opportunities, aligned with the real dynamics observed in the system.

A new search process followed the gradient direction (increased number of rooms and
radiologist time). The results are shown in Table 13.

Table 13. Search Process Experiment 3.

Scenario FT1 FT2 FT3 FT4 z
1 174 223 321 84 0.215
2 172 223 307 83 0.207
3 166 220 297 80 0.181
4 162 214 287 78 0.149
5 173 221 291 82 0.19

Table 13 shows that the response variable can be improved until the fourth simulated
scenario in the gradient direction. The next step is to run a new experiment, with scenario
4 of experiment 3 as the central point of the new design. After performing this latest
experiment, the ANOVA analysis yields a modest R-squared value of 0.14. Table 14 shows
no significant variables in the model, indicating that the model does not fit the data well
and that a curved surface is likely present.

Table 14. Regression Coefficients for Experiment 4.

Factors Coefficients p-Value
Intercept 0.28 341 x 1077
A —0.02 0.492
B —0.01 0.813
C 0.01 0.662
D 0.00 0.857
AB 0.0130 0.592
AC —0.0089 0.712
AD 0.00 0.938
BC 0.004 0.862
BD 0.00 0.951
CD —0.01 0.636

4.4. Second-Order Model Estimation and Gradient-Based Optimization

Since the linear model developed in the previous stage no longer adequately captured
the behavior of the response surface, a more flexible modeling approach was required. To
address this limitation, a second-order model was developed using a Central Composite
Design (CCD). This type of design is specifically suited for capturing curvature in the
response surface, enabling the modeling of nonlinear relationships and interaction effects
more accurately. To achieve this, the CCD expands the original factorial design by adding
2k axial (or star) points located at a defined distance & from the center along each factor
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axis. These additional simulation scenarios allow for the estimation of quadratic effects,
improving the precision of the optimization and helping to identify a local optimum in the
experimental region. The « distance is (2k)0.25 = 2, for k = 4.

Figure 7 shows an example of the location of the axial points for 2 and 3 factors.

®
L 4 4
o /.
-1.41 « - 1.7

¢ ®
Figure 7. Axial Points for Composite Designs.

The composite design and the results of running all these experiments are presented
in Table 15.

Table 15. Central Composite Design.

Scenario A B C D AB AC AD BC BD CD AA BB cc DD FT1 FT2 FT3 FT4 z
1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1 189 231 326 88 0.267
2 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 168 236 326 87 0.264
3 -1 1 -1 -1 -1 1 1 -1 -1 1 1 1 1 1 194 248 350 91 0.343
4 1 1 -1 -1 1 -1 -1 -1 -1 1 1 1 1 1 185 232 297 89 0.261
5 -1 -1 1 -1 1 -1 1 -1 1 -1 1 1 1 1 181 264 306 92 0.378
6 1 -1 1 -1 -1 1 -1 -1 1 -1 1 1 1 1 176 257 263 95 0.343
7 -1 1 1 -1 -1 -1 1 1 -1 -1 1 1 1 1 183 240 335 88 0.294
8 1 1 1 -1 1 1 -1 1 -1 -1 1 1 1 1 185 238 313 93 0.295
9 -1 -1 -1 1 1 1 -1 1 -1 -1 1 1 1 1 173 258 294 97 0.360
10 1 -1 -1 1 -1 -1 1 1 -1 -1 1 1 1 1 193 236 307 100 0.312
11 -1 1 -1 1 -1 1 -1 -1 1 -1 1 1 1 1 174 223 278 92 0.224
12 1 1 -1 1 1 -1 1 -1 1 -1 1 1 1 1 187 238 309 92 0.295
13 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1 1 1 204 242 281 102 0.342
14 1 -1 1 1 -1 1 1 -1 -1 1 1 1 1 1 167 209 293 99 0.191
15 -1 1 1 1 -1 -1 -1 1 1 1 1 1 1 1 194 252 312 86 0.336
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 183 236 309 105 0.316
17 -2 0 0 0 0 0 0 0 0 0 4 0 0 0 189 241 310 106 0.341
18 2 0 0 0 0 0 0 0 0 0 4 0 0 0 188 237 305 101 0.313
19 0 -2 0 0 0 0 0 0 0 0 0 4 0 0 191 241 294 96 0.313
20 0 2 0 0 0 0 0 0 0 0 0 4 0 0 187 244 299 93 0.315
21 0 0 -2 0 0 0 0 0 0 0 0 0 4 0 182 239 294 102 0.312
22 0 0 2 0 0 0 0 0 0 0 0 0 4 0 179 231 289 104 0.287
23 0 0 0 -2 0 0 0 0 0 0 0 0 0 4 188 236 293 99 0.301
24 0 0 0 2 0 0 0 0 0 0 0 0 0 4 189 241 310 101 0.329
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 162 214 287 78 0.149
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 163 215 275 80 0.155
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 161 216 271 81 0.158
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 167 215 272 79 0.155

After running this new design, the ANOVA analysis shows a value of 0.7. All the
square factors are significant, as shown in Table 16, concluding that a second-order model
can be adjusted to obtain the quadratic function presented in Equation (7).

y = 0.155 — 0.013A — 0.004B + 0.005C — 0.001D + 0.013AB — 0.009AC — 0.002AD + 0.004BC+

7
0.0015BD — 0.011CD + 0.041A2 + 0.038B2 + 0.034C? + 0.038D? @)
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Table 16. Regression Coefficients for Experiment 5.

Factors Coefficients p Value
Intercept 0.155 1.8 x 107>
A —0.013 0.183
B —0.004 0.705
C 0.005 0.617
D —0.001 0.953
AB 0.013 0.289
AC —0.009 0.462
AD —0.002 0.875
BC 0.004 0.728
BD 0.001 0.903
CD —0.011 0.353

AA 0.041 9.0 x 10~

BB 0.038 0.002

CC 0.034 0.003

DD 0.038 0.002
@

5. Discussion

Equation (7) represents an inflection point from the entire surface and a local optimal
region. By using mathematical programming tools, it is possible to obtain one locally
optimal solution, solving, in general, the nonlinear system of equations Vf(x) = 0 where f is
defined according to Equation (7) and x € R*. The solution obtained from the optimization
process is A = 0.1480, B = 0.029, C = —0.054, D = 0.0086, and Z = 0.1538. This result is
close to zero and matches the average of the four central points of the quadratic surface, as
shown in the last four scenarios of Table 16. In other words, the optimal solution for the
surface is the central composite design’s central point. Table 17 summarizes the complete
search process from experiments 1 to 5.

Table 17. Search Process Summary.

FT1 FT2 FT3 FT4 zZ

175 233 295 108 0.302
182 226 317 89 0.244
175 218 299 98 0.227
168 220 287 97 0.222
176 222 311 88 0.220
175 221 303 89 0.216
174 223 321 84 0.215
172 223 307 83 0.207
166 220 297 80 0.181
163 215 276 80 0.155

The improvement obtained by comparing the initial and final solutions is presented
in Table 18.

Table 18. Final Comparison Table.

Solution FT1 FT2 FT3 FT4 z
Initial 176 235 295 108 0.310
Last 163 215 276 80 0.155

Improvement 7% 9% 6% 26% 50%
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Table 18 shows that the Z function can be improved by 50% after optimization. In
addition, all the individual objectives have improved, reducing the patient flow time from
7% to 26%. To obtain this solution, additional resources are required. The comparison
between Z_initial and Z_last shows a statistically significant improvement. A Welch's t-test
based on 15 independent replications per configuration yielded p < 0.05, indicating that
the improvement is statistically and practically meaningful. Table 19 shows the initial and
final solutions in terms of hospital resources. The emergency department personnel work
on different schedules. For example, some physicians and nurses work 24 h shifts, while
others work 12 h shifts. Radiologists have non-standardized schedules. Some are hired for
a few hours daily, while others work entire shifts. Therefore, this resource is represented in
the radiologists” available minutes daily.

Table 19. Resource Comparison.

Factor Resource Initial Solution Final Solution
L. 3(24h) 3(24h)
A Physicians 6 (12 h) 9 (12 h)
3(24h) 3(24h)
B Nurses 5(12h) 5(12h)
C Rooms 30 34
D Radiologists 2850 min per day 4350 min per day

Table 19 summarizes the additional resources needed to obtain the optimal solution.
Three 12 h shift physicians must be added, nurses do not require extra staff, four more rooms
are needed, and the radiologist availability has to be increased by approximately 53%.

This solution corresponds to an optimal point in a local context. Improved solutions
could be obtained if other resources are included in the analysis, such as X-ray machines,
MRI machines, Scanner machines, and nurse technicians. The initial study revealed that
these resources had remaining capacity, making it unnecessary to include them in the
optimization process. After reaching an optimal solution with the four main variables, the
bottleneck may have shifted to those resources that initially had excess capacity. Further
improvements could potentially be achieved through a new optimization process that
includes these resources.

While our study focused on a private hospital in Santiago, Chile, the proposed frame-
work is not limited to this context. Since it is based on discrete-event simulation and
multi-objective optimization, the approach can be adapted to hospitals in Chile, Latin
America, or other regions worldwide. However, generalization requires careful considera-
tion of three aspects: resources (availability of physicians, nurses, diagnostic capacity, and
physical infrastructure), operations (patient arrival patterns, care protocols, and scheduling
practices), and management (budget constraints, staffing policies, and institutional prior-
ities). These aspects determine how the model is calibrated for each setting. In this way,
our methodology acts as a flexible metamodel: its structure remains constant, but its input
data and constraints can be adjusted to reflect the real-world situation of different hospitals,
ensuring both scalability and local relevance.

Although alternative simulation-optimization techniques such as R-SPLINE [45] and
other metaheuristic methods (e.g., genetic algorithms, simulated annealing, or particle
swarm optimization) have been successfully applied in discrete-event simulation contexts,
their exploratory nature typically requires a substantially larger number of simulation
evaluations to reach convergence. In contrast, the combination of Design of Experiments
(DOE) and Response Surface Methodology (RSM) offers a structured and statistically
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grounded approach that balances computational feasibility with analytical interpretability.
Beyond identifying optimal configurations, RSM allows decision-makers to understand
how each resource influences system performance, to recognize emerging bottlenecks, and
to visualize how trade-offs evolve across iterations. This interpretability is particularly
valuable in healthcare operations, where decision support must combine analytical rigor
with managerial insight.

6. Conclusions

This study presents a practical and efficient process for optimizing multiple objectives
in emergency healthcare using Response Surface Methodology (RSM) in combination with
Discrete Event Simulation (DES). The methodology enabled us to achieve a 50% improve-
ment in the response variable, thereby significantly enhancing patient flow efficiency across
different care tracks. Importantly, this was accomplished by addressing multiple objectives
simultaneously, rather than relying on a single metric such as the average patient flow time.
This distinction is crucial, as each patient’s track may respond differently to changes in
resource allocation.

RSM proved to be a powerful and computationally efficient metamodeling approach.
The entire optimization process required only 98 simulation scenarios, each replicated
15 times with a one-week run length, resulting in over two hours of computer time per
scenario. In contrast, alternative simulation-based optimization techniques such as Genetic
Algorithms or Simulated Annealing might demand a far greater number of simulations,
making them less feasible for complex models like the one used in this study. In healthcare
contexts, resource and staffing configurations are subject to strict physical and contractual
constraints, meaning that feasible solutions typically lie close to the current operational
configuration rather than in distant regions of the search space. Under these conditions, a
global metaheuristic exploration is not necessarily more advantageous, as it may identify
configurations that diverge substantially from practical feasibility and would also be
computationally very demanding, requiring the evaluation of a large number of scenarios
to converge toward feasible solutions.

Our results also suggest that further improvements could be achieved by incorporating
additional variables that were initially held constant. As the optimization progressed,
the system’s bottlenecks appeared to shift toward those resources with initial surplus
capacity, highlighting the dynamic nature of system constraints and the value of iterative,
adaptive planning.

The integration of RSM and goal programming provides a structured way to capture
and balance competing goals, such as minimizing patient waiting time while maximizing
resource efficiency. Moreover, the ability to model and understand nonlinear interac-
tions between resources and patient outcomes contributes to more informed and robust
decision-making.

We emphasize the importance of correlation analysis among different patient trajec-
tories to help reduce dimensionality in multi-objective optimization problems without
compromising solution quality. Additionally, any capacity planning effort must account
for projected increases in demand to ensure that solutions remain effective and scalable in
the long term.

The framework can be easily updated to accommodate higher or seasonal demand
fluctuations. By recalibrating the response surface and goal programming components
with new arrival data, the model can estimate the additional resources required to sustain
service levels during peak periods, ensuring long-term operational sustainability.

In sum, this research highlights how hybrid approaches, combining simulation, RSM,
and multi-objective optimization, can offer powerful tools for navigating the inherent com-
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plexity of emergency healthcare systems. These strategies support data-driven decisions
that not only improve operational performance but also enhance the quality of patient care.

The proposed simulation-optimization framework proved effective in identifying
feasible strategies to improve emergency department performance while maintaining oper-
ational realism. Operational costs were implicitly captured through the resource capacity
constraints, which reflect real staffing availability and scheduling policies. Although the
model did not include explicit cost functions, the optimization sought to enhance patient
flow efficiency without increasing total resource utilization, maintaining consistency with
the hospital’s operational and financial constraints. Future extensions could incorporate
explicit cost parameters or budgetary limits to broaden the decision-making capabilities of
the framework.

Despite its promising results, this study has some limitations. First, the model was
applied to a single emergency department, and the results should be interpreted within that
operational context. Second, the optimization relies on response surface approximations,
which provide local but not necessarily global optima. Third, operational costs were
implicitly captured through resource constraints rather than explicit cost functions. Finally,
the model assumes a constant patient-mix distribution and staffing policy during the
simulated horizon. Nevertheless, the proposed framework can be readily updated with new
data or extended through metaheuristic or hybrid approaches to address these limitations
in future research.
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