

*Systematic Review*

# Morphological Variations of the Anterior Cerebral Artery: A Systematic Review with Meta-Analysis of 85,316 Patients

George Triantafyllou <sup>1,2</sup>, Ioannis Paschopoulos <sup>1</sup>, Katerina Kamoutsis <sup>1</sup>, Panagiotis Papadopoulos-Manolarakis <sup>1,3</sup>, Juan Jose Valenzuela-Fuenzalida <sup>4</sup>, Juan Sanchis-Gimeno <sup>5</sup>, Alejandro Bruna-Mejias <sup>6</sup>, Andres Riveros-Valdés <sup>7</sup>, Nikolaos-Achilleas Arkoudis <sup>8,9</sup>, Alexandros Samolis <sup>1</sup>, George Tsakotos <sup>1</sup> and Maria Piagkou <sup>1,2,\*</sup>

- <sup>1</sup> Department of Anatomy, School of Medicine, Faculty of Health Sciences, National and Kapodistrian University of Athens, 11527 Athens, Greece; georgerose406@gmail.com (G.T.); johnpascho@gmail.com (I.P.); katerina.kamoutsis@gmail.com (K.K.); p.papado@gmail.com (P.P.-M.); alexsamolis@me.com (A.S.); gtsakotos@gmail.com (G.T.)
- <sup>2</sup> "VARIANTIS" Research Laboratory, Department of Clinical Anatomy, Masovian Academy in Płock, 09400 Płock, Poland
- <sup>3</sup> Department of Neurosurgery, General Hospital of Nikaia-Piraeus, 18454 Athens, Greece
- <sup>4</sup> Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; juan.kine.2015@gmail.com
- <sup>5</sup> Giaval Research Group, Department of Anatomy and Human Embryology, Faculty of Medicine, University of Valencia, 46001 Valencia, Spain; juan.sanchis@uv.es
- <sup>6</sup> Department of Sciences and Geography, Faculty of Natural and Exact Sciences, Universidad de Playa Ancha, Valparaíso 2360072, Chile; alejandro.bruna@upla.cl
- <sup>7</sup> Department of Morphological Sciences, Faculty of Sciences, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile; andres.riveros@uss.cl
- <sup>8</sup> Research Unit of Radiology and Medical Imaging, National and Kapodistrian University of Athens, 12462 Athens, Greece; nick.arkoudis@gmail.com
- <sup>9</sup> Second Department of Radiology, General University Hospital Attikon, National and Kapodistrian University of Athens, 12462 Athens, Greece

\* Correspondence: mapian@med.uoa.gr



Academic Editor: Francesco Sessa

Received: 11 July 2025

Revised: 25 July 2025

Accepted: 28 July 2025

Published: 28 July 2025

**Citation:** Triantafyllou, G.; Paschopoulos, I.; Kamoutsis, K.; Papadopoulos-Manolarakis, P.; Valenzuela-Fuenzalida, J.J.; Sanchis-Gimeno, J.; Bruna-Mejias, A.; Riveros-Valdés, A.; Arkoudis, N.-A.; Samolis, A.; et al. Morphological Variations of the Anterior Cerebral Artery: A Systematic Review with Meta-Analysis of 85,316 Patients. *Diagnostics* **2025**, *15*, 1893.

<https://doi.org/10.3390/diagnostics15151893>

**Copyright:** © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

## Abstract

**Background:** The anterior cerebral artery (ACA), a critical component of the cerebral arterial circle, exhibits substantial morphological variability. While previous studies have explored ACA morphology using cadaveric and imaging methods, a comprehensive meta-analysis incorporating the latest evidence is lacking. **Methods:** Following current guidelines, a systematic review and meta-analysis were performed across four major databases, supplemented by the gray literature and targeted journal searches. Ninety-nine studies, encompassing 85,316 patients, met the inclusion criteria. Statistical analyses were conducted using R, applying random effects models to estimate pooled prevalence and morphometric parameters. **Results:** The pooled prevalence of typical ACA morphology was 93.75%, whereas variants were noted in 6.25% of cases. The predominant variation identified was the accessory ACA (aACA) (1.99%), followed by unilateral absence of the A1 segment (1.78%), with the latter being more frequently recognized in imaging studies ( $p < 0.0001$ ). Rare variants encompassed azygos ACA (azACA) (0.22%), fenestrated ACA (fACA) (0.02%), and bihemispheric ACA (bACA) (0.02%). The mean diameter and length of the A1 segment were measured at 2.10 mm and 14.24 mm, respectively. Hypoplasia of the A1 segment (<1 mm diameter) was recorded in 3.15% of cases. The influences of imaging modality, laterality, and population distribution on prevalence estimates were minimal. No significant publication bias was detected. **Conclusions:** Although infrequent, variants of the ACA possess significant clinical importance attributable to their correlation with aneurysm formation and the impairment of collateral circulation. The aACA and the absence of the A1 segment emerged as the most common variations. This meta-analysis

presents an updated and high-quality synthesis of ACA morphology, serving as a valuable reference for clinicians and anatomists.

**Keywords:** anterior cerebral artery; variation; neuroradiology; evidence-based anatomy; meta-analysis

## 1. Introduction

The variability of the cerebral arterial circle is often described through (cadaveric) dissection and imaging techniques. Documenting the typical anatomy of the brain's vascular supply and potential morphological variants is exceptionally straightforward with computed tomography (CTA), magnetic resonance (MRA), or digital subtraction angiography (DSA) [1–3].

The anterior circulation of the brain originates from the internal carotid artery (ICA) system, comprising the anterior and middle cerebral arteries (ACA and MCA). According to Gray's Anatomy and Bergman's Comprehensive Encyclopedia of Human Anatomic Variations, the ACA is divided into three parts: from its origin to the junction with the anterior communicating artery (AComA)—the A1 segment; from the intersection with the AComA to the origin of the callosomarginal artery (CMA)—the A2 segment; and distal to the origin of the CMA—the A3 segment [4,5]. The ACA's course is also significant, as it initially passes anteromedially to the optic nerve (ON), and then travels in the great longitudinal fissure and around the genu of the corpus callosum [4].

Several ACA variations have been described, mainly for the A1 and proximal A2 segments. These variants include A1 hypoplasia or absence, A1 fenestration, accessory A2 (triplicated ACA or median artery of corpus callosum), azygous ACA (azACA), and bihemispheric ACA (bACA) [5]. All variations in the ACA were previously associated with aneurysm formation [6]. However, it is essential to mention that variations are more frequently located at the AComA complex [7].

Although research on ACA morphology has expanded recently, only Fotakopoulos et al. [8] have published a systematic review with a meta-analysis. In contrast, our study identified a substantially larger dataset and a broader spectrum of ACA variants. This meta-analysis aims to provide a comprehensive, evidence-based overview of ACA variability using current anatomical and statistical standards.

## 2. Materials and Methods

The systematic review with a meta-analysis adhered to the guidelines set forth by the Evidence-based Anatomy Workgroup for anatomical meta-analysis [9] and the PRISMA 2020 for systematic reviews (see Supplementary Materials) [10], similar to previous studies [11,12]. The study's protocol was not registered in any online database. The figures were obtained from the General Hospital of Nikaia-Piraeus following ethical approval (approval number: 56485; date: 13 November 2024).

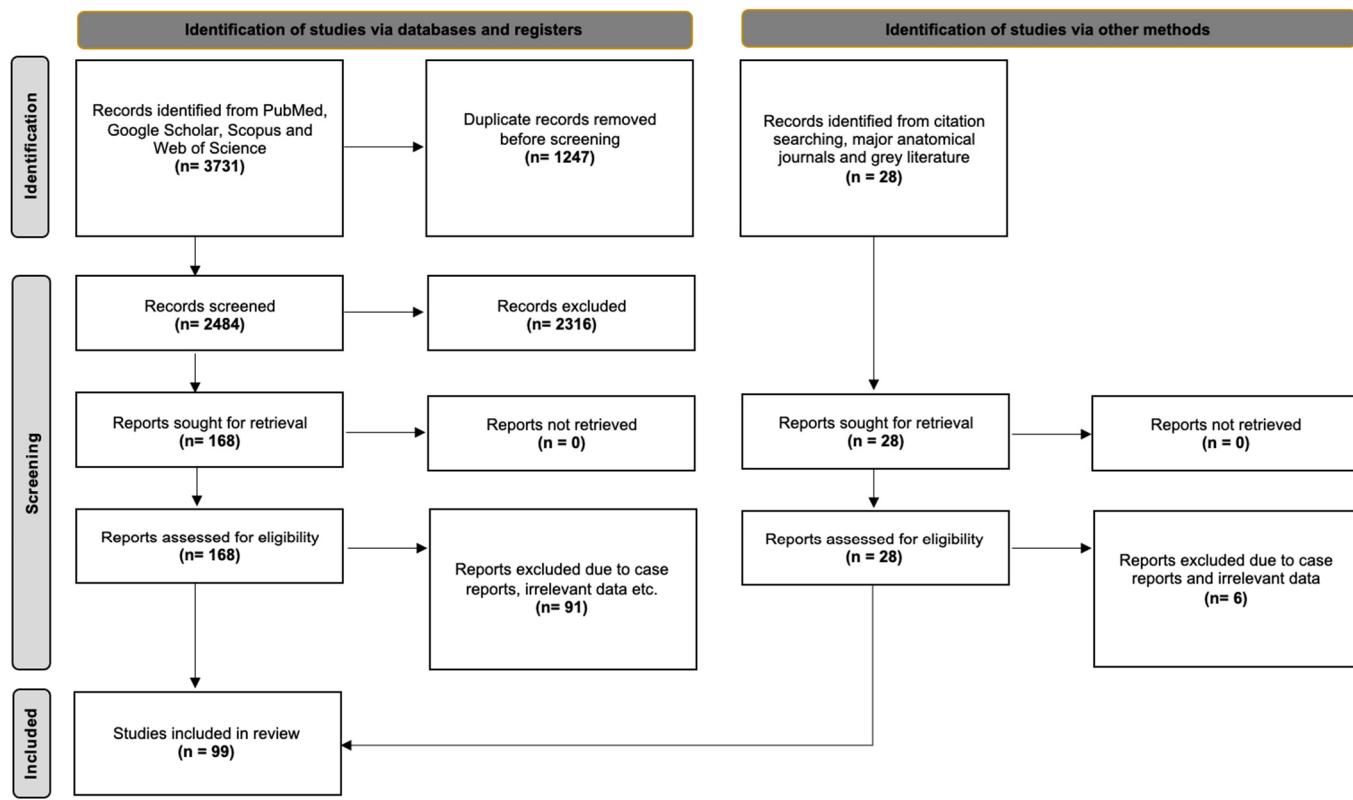
The literature search was performed using the online databases PubMed, Google Scholar, Scopus, and Web of Science until April 2025. The following terms were used in various combinations: "anterior cerebral artery," "anterior communicating artery," "variation," "anterior circulation," "cadaveric study," "imaging study," and "radiological study." Furthermore, the references of all included articles were reviewed, the gray literature was investigated, and a comprehensive search of key anatomical journals (Annals of Anatomy, Clinical Anatomy, Journal of Anatomy, Anatomical Record, Surgical and Radiological Anatomy, Folia Morphologica, European Journal of Anatomy, Morphologie, Anatomical Science Inter-

national, and Anatomy and Cell Biology) was conducted. The inclusion criteria consisted of studies that reported the prevalence of ACA variants. Case reports, conference abstracts, animal studies, and studies presenting irrelevant or insufficient data were excluded.

Three independent reviewers (GTr, IP, and KK) searched the literature and extracted data into Microsoft Excel sheets. The results were compared, and the other authors resolved any discrepancies. The Anatomical Quality Assurance (AQUA) tool, developed by the Evidence-based Anatomy Workgroup for anatomical reviews [13], was utilized to assess the risk of bias for each article.

A statistical meta-analysis was conducted using the open-source R programming language and RStudio software (version 4.3.2), employing the “meta” and “metafor” packages by a single researcher (GTr). The pooled prevalence was calculated utilizing inverse variance and random effects models. The proportion (prevalence) meta-analysis was performed using the Freeman–Tukey double arcsine transformation, the DerSimonian–Laird estimator for the between-study variance  $\tau^2$ , and the Jackson method for the confidence interval of  $\tau^2$  and  $\tau$ . The mean (mean diameter) meta-analysis was executed using the untransformed (raw) means, the restricted maximum likelihood estimator for  $\tau^2$ , and the Q-Profile method for confidence intervals of  $\tau^2$  and  $\tau$ . Furthermore, several subgroup analyses were conducted to identify variables (*geographic distribution, laterality, or imaging technique*) influencing the estimated pooled prevalence and mean. A *p*-value of less than 0.05 was considered statistically significant. Cochran’s Q statistic was employed to evaluate the presence of heterogeneity across studies, while the Higgins  $I^2$  statistic quantified this heterogeneity. A Cochran’s Q *p*-value < 0.10 was regarded as significant. Higgins  $I^2$  values between 0 and 40% were classified as negligible, 30–60% as moderate heterogeneity, 50–90% as substantial heterogeneity, and 75–100% as considerable heterogeneity. To assess the presence of a small-study effect (the phenomenon that smaller studies may exhibit differing effects compared to larger studies), the DOI plot with the LFK index was generated for the proportions meta-analysis [14], and the Funnel Plot with the Thomson–Sharp test was utilized for the means meta-analysis [15].

### 3. Results


#### 3.1. Search Analysis

The database search yielded 3731 articles exported to Mendeley version 2.10.9 (Elsevier, London, UK). After excluding duplicate and irrelevant papers through title and abstract screening, 168 studies were subjected to full-text retrieval and examination. Ultimately, 77 studies were deemed eligible for systematic review. Additionally, 22 studies were identified through our secondary investigation, which included references, the gray literature, and an extensive search of anatomical journals. Therefore, 99 studies were included in our systematic review with meta-analysis. Figure 1 summarizes the flow diagram of our search analysis according to the PRISMA 2020 guidelines.

#### 3.2. Characteristics of Eligible Studies

A total of ninety-nine (99) studies were included in this analysis, encompassing a combined cohort of 85,316 patients. The average sample size per article was 862 patients. Among the studies, fifty-four (54) were cadaveric, while forty-three (43) utilized imaging methodologies and two (2) utilized surgical methods. Concerning the imaging techniques employed, eighteen (18) studies were based on MRA scans, seventeen (17) analyses were carried out using CTA scans, three (3) studies employed DSA, one (1) was carried out using ultrasound scans, one (1) combined CTA, MRA, and DSA scans, and three (3) studies did not report the exact imaging scans used. Regarding the demographics of the studied populations, forty-eight (48) studies were carried out on Asian populations, twenty-four (24) on European

populations, twelve (12) on North American populations, six (6) on South American populations, and four (4) on African populations. The characteristics of the included studies are summarized in Table 1.



**Figure 1.** The search analysis flow chart according to the PRISMA 2020 guidelines.

**Table 1.** The characteristics of the eligible studies, including their risk of bias assessment based on the AQUA tool [13].

| Study (Year)                       | Population    | Type of Study         | Sample | Patients' Demographic                            | Risk of Bias |
|------------------------------------|---------------|-----------------------|--------|--------------------------------------------------|--------------|
| Ardakani et al. (2008) [16]        | Asia          | Cadaveric             | 60     | Fetuses and infants (23–74 weeks; mean 48 weeks) | High         |
| Avci et al. (2001) [17]            | Asia          | Cadaveric             | 50     | Adults                                           | High         |
| Baptista (1963) [18]               | South America | Cadaveric             | 762    | NR                                               | High         |
| Beyhan et al. (2020) [19]          | Asia          | Imaging (CTA/MRA/DSA) | 9826   | Children and adults (2–86)                       | High         |
| Bharatha et al. (2008) [20]        | North America | Imaging (CTA)         | 1016   | Adults                                           | Low          |
| Chrissikopoulos et al. (2024) [21] | Europe        | Imaging (DSA)         | 912    | Adults                                           | High         |
| Chuang et al. (2006) [22]          | Asia          | Imaging (MRA)         | 560    | Adults                                           | High         |
| Cilliers et al. (2018) [23]        | Africa        | Cadaveric             | 78     | Adults (22–72)                                   | High         |
| Cui et al. (2015) [24]             | Asia          | Cadaveric             | 90     | Adults                                           | High         |
| De Silva et al. (2009) [25]        | Asia          | Cadaveric             | 450    | Adults (18–73)                                   | High         |
| Dharmasaroja et al. (2019) [26]    | Asia          | Imaging (CTA)         | 132    | Adults                                           | High         |
| Dumitrescu et al. (2022) [27]      | Europe        | Cadaveric             | 192    | Adults                                           | Low          |

**Table 1.** *Cont.*

| Study (Year)                         | Population    | Type of Study | Sample | Patients' Demographic             | Risk of Bias |
|--------------------------------------|---------------|---------------|--------|-----------------------------------|--------------|
| Dunker and Harris (1976) [28]        | North America | Cadaveric     | 40     | Adults (41–83)                    | High         |
| Eftekhari et al. (2006) [29]         | Asia          | Cadaveric     | 204    | Adults (15–75)                    | Low          |
| Fawcett and Blachford (1905) [30]    | North America | Cadaveric     | 1400   | Adults                            | High         |
| Ferre et al. (2013) [31]             | Europe        | Imaging (CTA) | 208    | Adults                            | Low          |
| Fisher (1965) [32]                   | America       | Cadaveric     | 1428   | NR                                | High         |
| Fredon et al. (2021) [33]            | Europe        | Imaging (MRA) | 1234   | Adults (18–65)                    | High         |
| Furuichi et al. (2018) [34]          | Asia          | Cadaveric     | 40     | Embryos (end of embryonic period) | Low          |
| Gomes et al. (1986) [35]             | North America | Cadaveric     | 60     | Adults                            | Low          |
| Gunnal (2013) [36]                   | Asia          | Cadaveric     | 224    | NR                                | High         |
| Halama et al. (2022) [37]            | Europe        | Imaging (DSA) | 556    | Adults (17–71)                    | Low          |
| Hamidi et al. (2013) [38]            | Asia          | Imaging (CTA) | 1000   | Children and adults (2–91)        | High         |
| Han et al. (2011) [39]               | Asia          | Imaging (CTA) | 334    | Adults (mean age 50.9)            | High         |
| Hashemi et al. (2013) [40]           | Asia          | Cadaveric     | 400    | Adults (16–71)                    | High         |
| Hong et al. (2010) [41]              | Asia          | Imaging (CTA) | 202    | Children and adults (13–73)       | Low          |
| Huber et al. (1980) [42]             | Europe        | Imaging (CTA) | 15,564 | Adults (31–69)                    | Low          |
| Iqbal et al. (2013) [43]             | Asia          | Cadaveric     | 100    | NR                                | High         |
| Jain (1964) [44]                     | America       | Cadaveric     | 600    | NR                                | High         |
| Jimenez-Sosa et al. (2017) [45]      | South America | Imaging (CTA) | 566    | Children and adults (1–99)        | Low          |
| Kahilogullari et al. (2008) [46]     | Asia          | Cadaveric     | 60     | Adults                            | High         |
| Kamath (1981) [47]                   | Asia          | Cadaveric     | 200    | NR                                | High         |
| Kannabathula et al. (2017) [48]      | Asia          | Cadaveric     | 150    | NR                                | High         |
| Kapoor et al. (2008) [49]            | Asia          | Cadaveric     | 2000   | Children and adults               | Low          |
| Karatas et al. (2015) [50]           | Asia          | Cadaveric     | 200    | Adults (16–95)                    | Low          |
| Kaspera et al. (2014) [51]           | North America | Imaging (CTA) | 350    | Adults (18–75)                    | Low          |
| Kayembe et al. (1984) [52]           | Asia          | Cadaveric     | 88     | Adults                            | High         |
| Kedia et al. (2013) [53]             | Asia          | Cadaveric     | 30     | Adults                            | High         |
| Klimek-Piotrowska et al. (2016) [54] | Europe        | Cadaveric     | 200    | Adults                            | Low          |
| Kondori et al. (2017) [55]           | Asia          | Imaging (MRA) | 1050   | Adults (25–78)                    | Low          |
| Kovac et al. (2014) [56]             | Europe        | Imaging (CTA) | 910    | Adults                            | Low          |
| Krabbe-Hartkamp et al. (1998) [57]   | Europe        | Imaging (MRA) | 300    | Adults                            | High         |
| Krystiewicz et al. (2021) [58]       | Europe        | Cadaveric     | 666    | Adults                            | Low          |
| Krzyzewski et al. (2015) [59]        | Europe        | Imaging (CTA) | 822    | Adults                            | Low          |
| Kulenovic et al. (2003) [60]         | Europe        | Cadaveric     | 200    | NR                                | High         |
| Kwak et al. (1980) [61]              | Asia          | Imaging (CTA) | 592    | NR                                | High         |
| Kwon et al. (2005) [62]              | Asia          | Imaging (MRA) | 482    | Adults                            | Low          |
| Lee et al. (2017) [63]               | Asia          | Imaging (CTA) | 1560   | Adults                            | High         |
| Lehecka et al. (2008) [64]           | Europe        | Imaging       | 202    | NR                                | High         |
| LeMay and Gooding (1966) [65]        | North America | Cadaveric     | 214    | NR                                | High         |

**Table 1.** *Cont.*

| Study (Year)                      | Population    | Type of Study | Sample | Patients' Demographic                       | Risk of Bias |
|-----------------------------------|---------------|---------------|--------|---------------------------------------------|--------------|
| Lopez-Sala et al. (2020) [66]     | Europe        | Imaging (CTA) | 852    | Adults                                      | High         |
| Macchi et al. (1996) [67]         | Europe        | Imaging (MRA) | 200    | Adults                                      | High         |
| Madkour (2023) [68]               | Asia          | Imaging (MRA) | 148    | Adults                                      | High         |
| Malamateniou et al. (2009) [69]   | Europe        | Imaging (MRA) | 188    | Neonates (25–35 weeks)                      | High         |
| Marinkovic et al. (1990) [70]     | Europe        | Cadaveric     | 52     | Adults                                      | High         |
| Mishra et al. (2004) [71]         | Asia          | Cadaveric     | 100    | NR                                          | High         |
| Nathal et al. (1992) [72]         | Asia          | Surgery       | 268    | NR                                          | High         |
| Nordon and Rodrigues (2012) [73]  | South America | Cadaveric     | 100    | Adults                                      | Low          |
| Nowinski et al. (2009) [74]       | Asia          | Imaging (MRA) | 96     | NR                                          | High         |
| Nyasa et al. (2021) [75]          | Africa        | Cadaveric     | 48     | Children and adults (3–65)                  | Low          |
| Ogawa et al. (1990) [76]          | Asia          | Surgery       | 412    | NR                                          | High         |
| Ogengo et al. (2019) [77]         | Africa        | Cadaveric     | 436    | Adults                                      | High         |
| Orandogen et al. (2016) [78]      | Asia          | Imaging (DSA) | 256    | NR                                          | High         |
| Ozaki et al. (1977) [79]          | Asia          | Cadaveric     | 292    | All ages (13 h after birth to 88 years old) | High         |
| Papantchev et al. (2013) [80]     | Europe        | Cadaveric     | 500    | Adults (18–91)                              | High         |
| Pashaj et al. (2013) [81]         | Europe        | Imaging (US)  | 904    | Fetuses (18–41 weeks)                       | High         |
| Perlmutter and Rhoton (1978) [82] | North America | Cadaveric     | 100    | Adults                                      | High         |
| Puchades-Orts et al. (1976) [83]  | Europe        | Cadaveric     | 124    | NR                                          | High         |
| Qiu et al. (2015) [84]            | Asia          | Imaging (MRA) | 4492   | Adults                                      | High         |
| Ring and Waddington (1968) [85]   | North America | Cadaveric     | 50     | NR                                          | High         |
| Riveros (2022) [86]               | South America | Cadaveric     | 60     | Adults                                      | High         |
| Saha et al. (2024) [87]           | Asia          | Cadaveric     | 112    | NR                                          | High         |
| Saikia et al. (2020) [88]         | Asia          | Cadaveric     | 140    | NR                                          | High         |
| Sanders et al. (1943) [89]        | North America | Imaging       | 10,380 | Adults                                      | Low          |
| Serisawa et al. (1997) [90]       | Asia          | Cadaveric     | 60     | Adults                                      | High         |
| Shatri et al. (2019) [91]         | Europe        | Imaging (MRA) | 1026   | Adults                                      | Low          |
| Sibiya et al. (2024) [92]         | Africa        | Imaging (CTA) | 478    | Adults                                      | Low          |
| Siddiqi (2013) [93]               | Asia          | Cadaveric     | 102    | Adults                                      | Low          |
| Songsaeng et al. (2010) [94]      | North America | Imaging (MRA) | 400    | Adults                                      | Low          |
| Soundarya et al. (2024) [95]      | Asia          | Cadaveric     | 60     | Adults                                      | High         |
| Stefani et al. (2000) [96]        | South America | Cadaveric     | 76     | NR                                          | High         |
| Stefani et al. (2013) [97]        | South America | Imaging (MRA) | 60     | Adults                                      | Low          |
| Swetha et al. (2012) [98]         | Asia          | Cadaveric     | 140    | NR                                          | High         |

**Table 1.** *Cont.*

| Study (Year)                      | Population    | Type of Study | Sample | Patients' Demographic        | Risk of Bias |
|-----------------------------------|---------------|---------------|--------|------------------------------|--------------|
| Tanaka et al. (2006) [99]         | Asia          | Imaging (MRA) | 234    | Adults                       | Low          |
| Tao et al. (2006) [100]           | Asia          | Cadaveric     | 90     | Adults                       | High         |
| Thenmonzhi et al. (2019) [101]    | Asia          | Cadaveric     | 200    | Adults                       | High         |
| Tulleken (1978) [102]             | Europe        | Cadaveric     | 150    | NR                           | High         |
| Uchino et al. (2006) [6]          | Asia          | Imaging (MRA) | 1782   | Children and adults (0–92)   | High         |
| Ugur et al. (2005) [103]          | Asia          | Cadaveric     | 40     | Adults                       | High         |
| Ugur et al. (2006) [104]          | Asia          | Cadaveric     | 100    | Adults                       | High         |
| Van der Zwan et al. (1992) [105]  | North America | Cadaveric     | 50     | Children and adults (15–100) | High         |
| Waaijer et al. (2006) [106]       | Europe        | Imaging (CTA) | 206    | Adults                       | High         |
| Wan Yin et al. (2014) [107]       | Asia          | Imaging (MRA) | 7144   | Adults                       | Low          |
| Wijesinghe et al. (2020) [108]    | Asia          | Cadaveric     | 146    | Adults (51–89)               | High         |
| Windle (1888) [109]               | Europe        | Cadaveric     | 400    | NR                           | High         |
| Wollschlaeger et al. (1968) [110] | North America | Imaging (DSA) | 582    | NR                           | High         |
| Yokus et al. (2021) [111]         | Asia          | Imaging (MRA) | 1162   | Adults                       | Low          |
| Zhao et al. (2009) [112]          | Asia          | Imaging (MRA) | 1524   | Children and adults (3–88)   | High         |
| Zurada et al. (2010) [113]        | Europe        | Imaging (CTA) | 230    | Children and adults (12–78)  | Low          |

### 3.3. Morphological Variations in the Anterior Cerebral Artery (ACA)

The typical morphology of the ACA was estimated to have a pooled prevalence of 93.75% (95% CI: 92.20–95.14), while the variant morphology of the ACA was calculated to have a pooled prevalence of 6.25% (95% CI: 4.97–8.00). The distribution of nationality, type of study (cadaveric or radiological), and imaging technique was not statistically associated with the pooled prevalence of the variant morphology ( $p = 0.4857$ ,  $p = 0.1312$ , and  $p = 0.1291$ , respectively). The DOI plot indicated an LFK index of +0.94, suggesting no asymmetry and the absence of small-study effects.

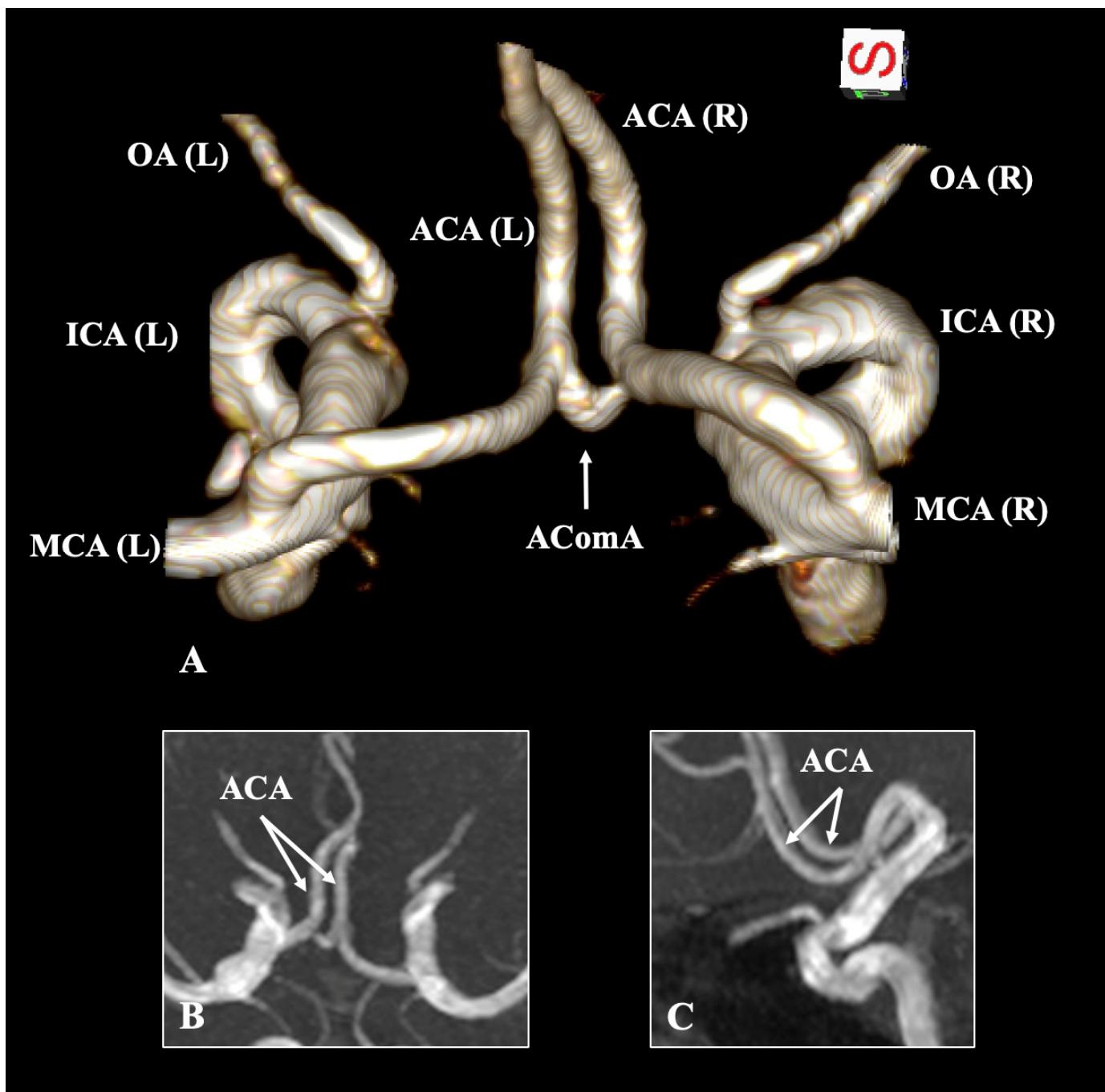
The most prevalent variation observed was the aACA, which demonstrated a pooled prevalence of 1.99% (95% CI: 1.50–2.54). The factors of nationality, imaging technique, and patient sex did not significantly influence the estimated prevalence ( $p = 0.6063$ ,  $p = 0.9091$ , and  $p = 0.2826$ , respectively). The DOI plot illustrated an LFK index of +0.24 (indicating no asymmetry), suggesting the absence of a small-study effect.

The second most common variation was the absence of the unilateral A1 segment, with a pooled prevalence of 1.78% (95% CI: 1.09–2.62). The nationality distribution, imaging technique, patient's sex, or side did not influence the pooled prevalence of A1 absence ( $p = 0.2343$ ,  $p = 0.8969$ ,  $p = 0.5992$ , and  $p = 0.2155$ , respectively). However, the type of study was a significant factor ( $p < 0.0001$ ), with imaging studies showing a higher pooled prevalence estimate than cadaveric ones (3.59% versus 0.05%, respectively). The DOI plot indicated an LFK index of +0.17 (no asymmetry), suggesting no small-study effect.

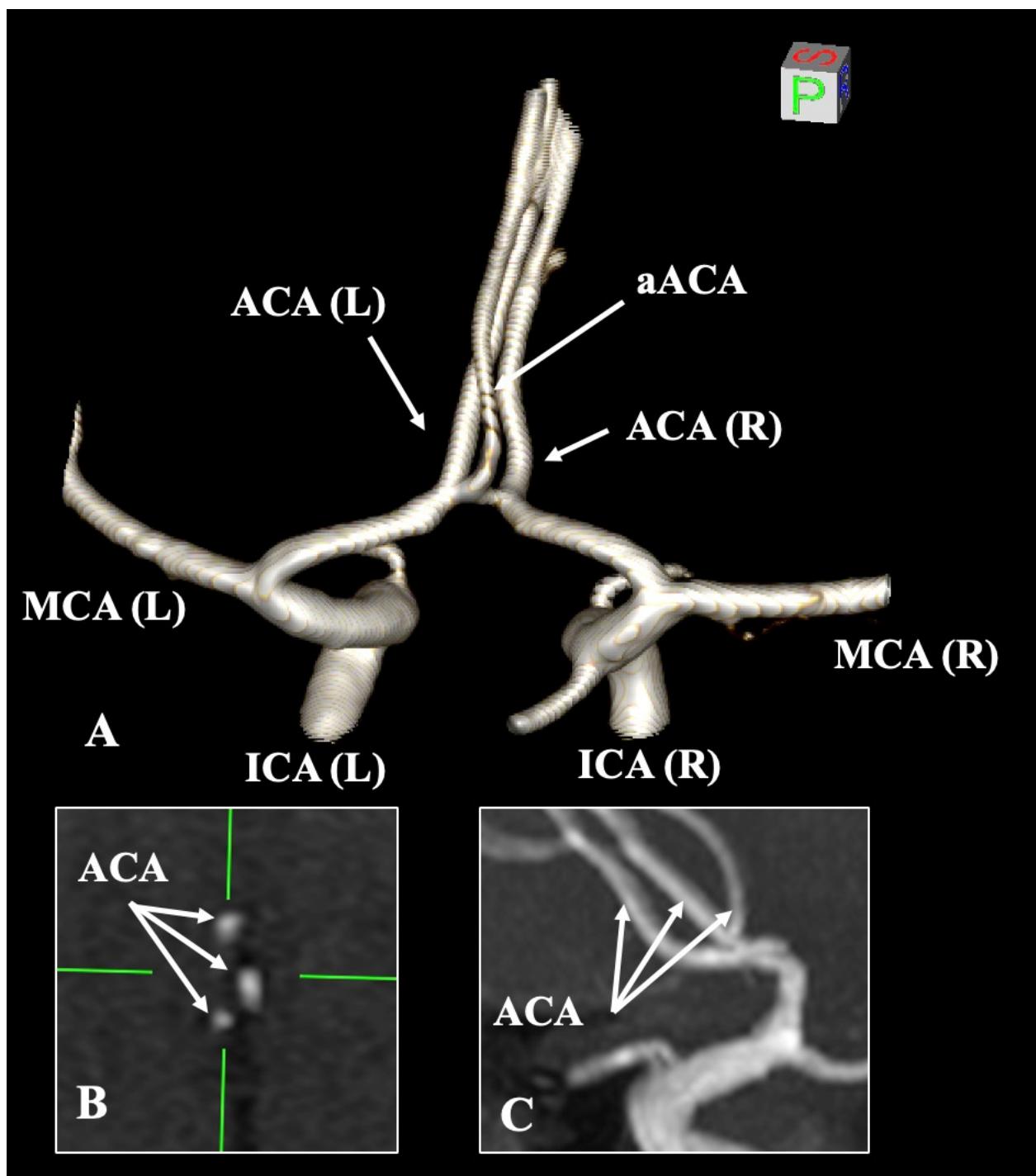
The rarest variants included the AzACA, which had a pooled prevalence of 0.22% (95% CI: 0.10–0.36); the fACA was observed at 0.02% (95% CI: 0.00–0.10), and the bACA was also identified at 0.02% (95% CI: 0.02%). No variations were significantly influenced by nationality, imaging technique, side, or the patient's sex.

### 3.4. Morphometrical Variations in the Anterior Cerebral Artery (ACA)

The pooled mean diameter of the A1 segment was 2.10 mm (95% CI: 1.87–2.34). Furthermore, the hypoplastic A1 segment (with a diameter of less than 1 mm) was found to have a pooled prevalence of 3.15% (95% CI: 2.09–4.40). The nationality, imaging technique, and side factors did not significantly influence the pooled mean diameter ( $p = 0.2226$ ,  $p = 0.2455$ , and  $p = 0.3098$ , respectively). The pooled mean length of the A1 segment was approximated at 14.24 mm (95% CI: 12.22–16.25). Insufficient data were available to conduct subgroup analyses for the pooled mean length.


## 4. Discussion

The present evidence-based meta-analysis examined the variations associated with the ACA, revealing that the atypical configuration occurs in 6.25% of cases, which is considered infrequent, and the typical morphology is 93.75% (Figure 2). Numerous variations exist within the anterior circulation of the brain; however, this review emphasizes the ACA explicitly. The imaging techniques employed did not influence the identification of ACA variants, indicating that MRA, CTA, and DSA are all highly reliable. Other, even rarer variations will be discussed alongside their clinical significance.


The aACA is recognized as the most prevalent morphological variant, yielding a pooled prevalence estimate of 1.99% (Figure 3). This variant is commonly referred to by various terms within the current literature, including triplicated ACA, accessory A2 segment, and median artery of the corpus callosum. It is important to highlight that the aACA included in the current meta-analysis had an origin from the AComA, while other origins such as the A1–A2 junction were not included due to the limited data. The imaging modalities employed did not impact the pooled prevalence of this variation; thus, CTA, MRA, and DSA are deemed suitable for diagnosing this variant. Nonetheless, the literature presents varying prevalences attributed to the age demographics of the samples, as older patients with diminished blood flow may possess an aACA that frequently remains undiagnosed [6]. Unfortunately, conducting a subgroup analysis based on age categories for this variant was unfeasible. The clinical significance of this variation pertains to the potential for aneurysm formation at its origin from the AComA [6,7]. In such instances, the aACA is one of the aneurysm's draining arteries. The trajectory of this variant vessel runs parallel and posterior to the pericallosal artery, rendering it susceptible to intraoperative damage [7]. Notably, Uchino and Tokushige [114] documented the presence of the aACA in conjunction with bilateral supernumerary MCAs. Furthermore, two aACAs (quadriplicated ACA) represent an exceedingly rare variant. Altafulla et al. [115] identified this exceptionally uncommon variation through dissection, where two median arteries of the corpus callosum originated from the AComA.

The absence of the unilateral A1 segment represents the second most prevalent morphological variant, with a pooled prevalence of 1.78% (Figure 4). A noteworthy detail is that the frequency of this variation is significantly elevated in imaging studies. This can be attributed to the difficulty in distinguishing extreme hypoplasia or potential acquired occlusion on radiological scans, whereas dissection can elucidate even the minutest vessels. Nevertheless, the imaging modality employed (MRA, CTA, or DSA) did not impact the identification of this variant. Two critical clinical implications accompany A1 segment absence: firstly, it induces hemodynamic stress, which frequently leads to the formation of an AComA aneurysm; and secondly, the contralateral A1 segment is often hyperplastic, thereby allowing for easier thrombus entry into this vessel compared to a typical A1 segment [6]. Furthermore, the integrity of the cerebral arterial circle is compromised when one A1 segment is absent; consequently, the primary collateral pathway in instances of stroke is insufficient for establishing collateral circulation [7]. An intriguing case has been

documented in which the absence of A1 coincided with bilateral posterior cerebral arteries of fetal origin (originating from the ICA), which entirely disrupted the collateral circulation of the cerebral arterial circle [2].

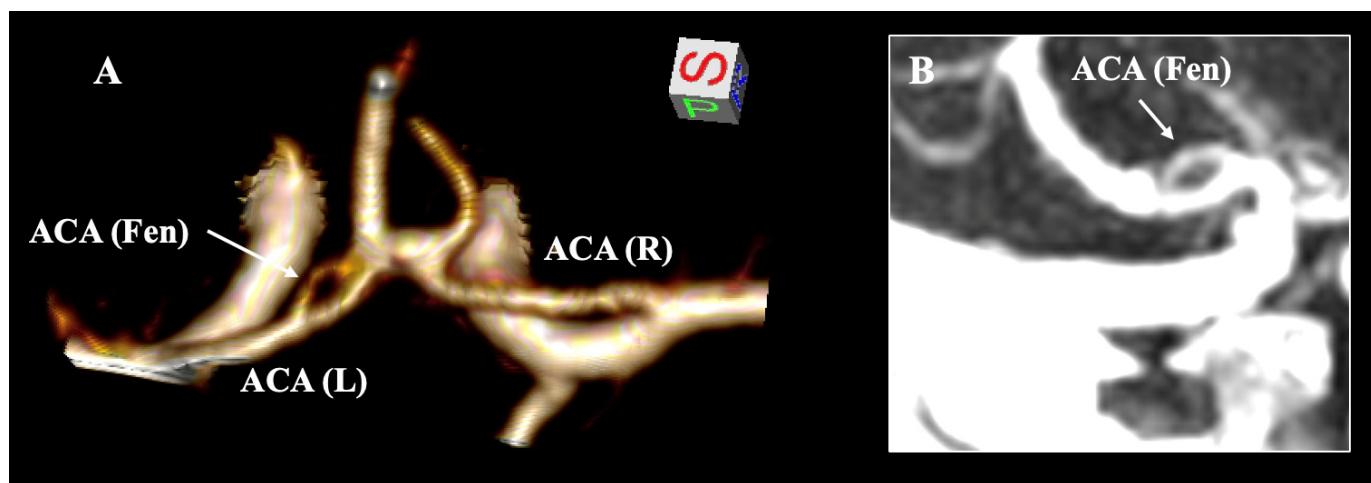


**Figure 2.** The typical configuration of the anterior cerebral artery (ACA) based on magnetic resonance angiography through three-dimensional (3D) reconstruction (A), and in 3D MPR mode coronal (B) and sagittal (C) slices. ICA—internal carotid artery; MCA—middle cerebral artery; OA—ophthalmic artery; AComA—anterior communicating artery; L—left; R—right.



**Figure 3.** The accessory anterior cerebral artery (aACA) was displayed on magnetic resonance angiography through three-dimensional (3D) reconstruction (A), 3D MPR axial slices (B), and sagittal slices (C). ICA—internal carotid artery; MCA—middle cerebral artery; L—left; R—right.



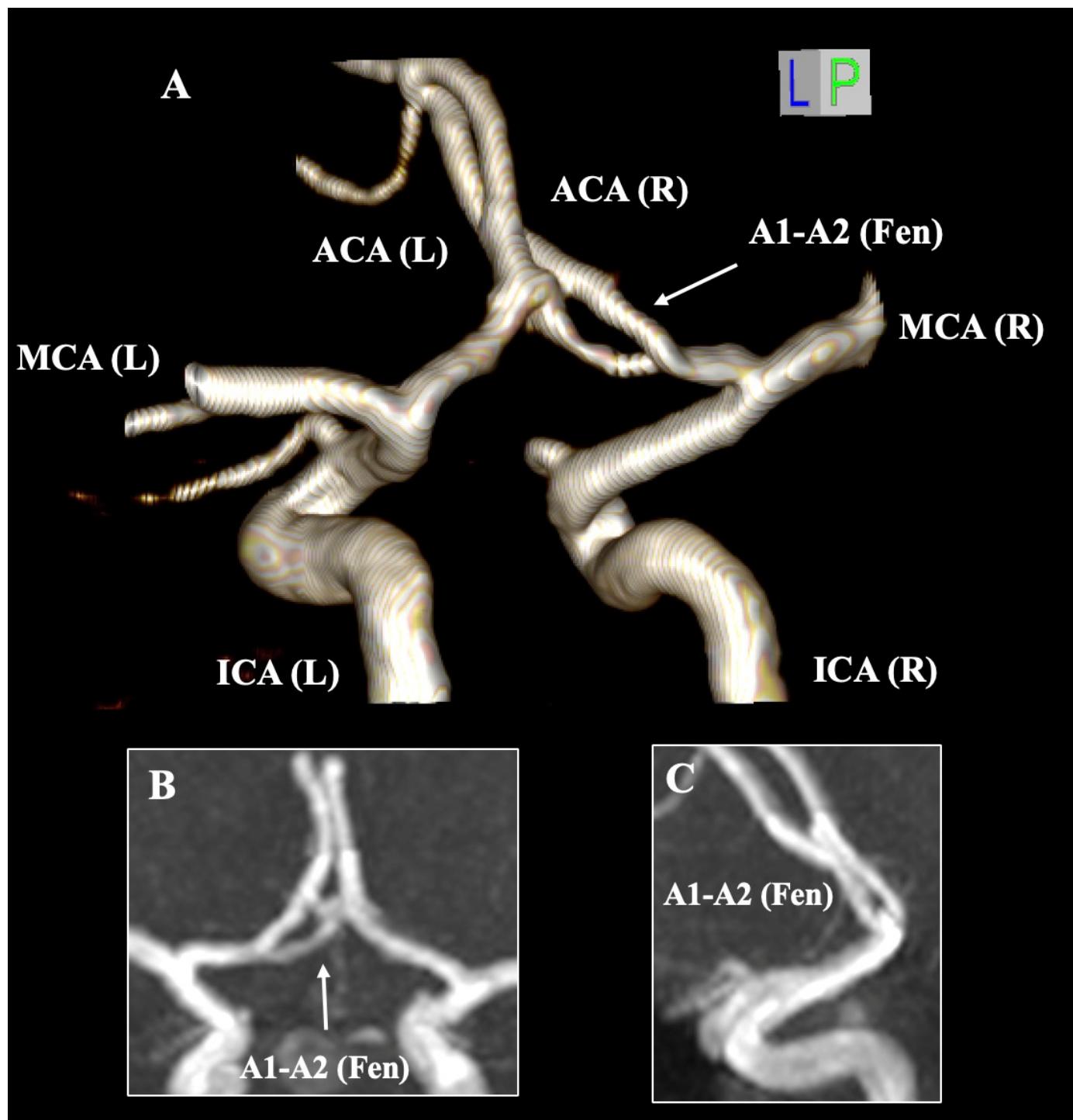

**Figure 4.** The absent A1 segment (dotted arrows) of the anterior cerebral artery (ACA) is illustrated based on magnetic resonance angiography through three-dimensional (3D) reconstruction (A) and 3D MPR coronal slices (B). ICA—internal carotid artery, MCA—middle cerebral artery, L—left, and R—right.

The unpaired A2 segment is identified as the azACA, a rare variant with a pooled prevalence of 0.22%. In comparison, the bihemispheric A2 segment is recognized when the two segments exhibit asymmetry, characterized by one segment being hyperplastic and supplying the designated territory. In contrast, the hypoplastic contralateral segment exhibits a pooled prevalence of 0.02%. It is essential to acknowledge these two variants distinctly. The presence of an azACA is often associated with the occurrence of distal ACA (dACA) aneurysms [6]. Beyhan et al. [19] categorized the azACA into four distinct types based on its branching pattern. This variant has been previously linked to various conditions, including holoprosencephaly, corpus callosum agenesis, arteriovenous malformation, hydranencephaly, and porencephalic cysts [19]. While our assessment did not establish a significant impact of the imaging technique on the pooled prevalence of the azACA, Beyhan et al. [19] highlighted that CTA should be regarded as the gold standard for diagnosing this variant.

The fACA was documented to exhibit a pooled prevalence of 0.02% (Figure 5). Within the anterior circulation, the AComA represents the most prevalent fenestration site, with a pooled prevalence of 5% [7]. Nevertheless, the AComA fenestration may be misidentified due to partial or complete duplication and the fenestration at the A1–A2 junction [116] (Figure 6). It must also be distinctly differentiated from the duplicate origin of the ACA, a notably rare variant first described by Uchino et al. [117]. Most studies have reported fenestration at the A1 segment, while fenestration at the A1–A2 junction or the A2 segment is significantly rarer. Uchino et al. [6] identified merely two cases of A2 fenestration in their

MRA study, whereas Minca et al. [118] documented one case in their CTA study. Cerebral arterial fenestration is frequently associated with fenestrations at the proximal end, which applies to the ACA. The fenestrated segments exhibit a congenital weakness of the arterial wall, subsequently altering the hemodynamics [6]. Given that the fenestrated branches typically align horizontally, they may be superimposed upon conventional angiographic images; therefore, three-dimensional (3D) imaging data are recommended to identify such variants [6]. Additionally, rarer case reports have indicated instances where fACA is associated with another fenestration within the cerebral arterial circle. Our research team previously described the coexistence of ACA and posterior cerebral artery fenestration [119], as well as the concomitance of ACA and basilar artery fenestration [120].

The morphometric parameters of the A1 segment may possess significant clinical implications, particularly concerning the diameter of the vessel. The pooled mean diameter of the A1 segment is measured at 2.10 mm. When this diameter falls below 1.0 mm, it is classified as a hypoplastic segment. Such variation results in inadequate collateral pathways and is associated with a higher prevalence of ipsilateral hemispheric stroke [22]. Furthermore, the same study noted that A1 hypoplasia constitutes a risk factor for small-artery atherosclerosis [22].




**Figure 5.** The fenestration (Fen) of the A1 segment of the anterior cerebral artery (ACA) is illustrated in the computed tomography angiography through three-dimensional (3D) reconstruction (A) and 3D MPR sagittal slices (B). L—left; R—right.

The embryological development of the primitive ICA can elucidate several variants of the ACA. It bifurcates into a cranial and a caudal branch, with the cranial branch representing the future ACA. The cranial branch terminates in the olfactory region and is defined as the primitive olfactory artery (POA). At an embryonic length of 7–12 mm, the precursor to the adult ACA emerges from the POA. At an embryonic length of 12–14 mm, this precursor constitutes the medial branch of the POA, and several plexiform anastomoses exist between the bilateral medial branches, which serve as the precursor to the adult AComA. At an embryonic stage of 20–24 mm, the primitive ACA assumes an upper course between the two cerebral hemispheres. In contrast, several primitive branches have already regressed, and the AComA has not yet reached its definitive form. At this juncture, the AComA exhibits a well-defined superior branch to the corpus callosum, which may persist into adulthood as an aACA (*median artery of the corpus callosum*) [121]. From the

embryological development of the primitive ICA, one can observe uncommon and rare types of vessels that persist in the adult cerebral arterial circle. Among them is the persistence of the POA (PPOA), which courses anteriorly along the olfactory nerve and subsequently makes a hairpin turn to continue the typical ACA course. Uchino et al. [122] documented an incidence of 0.14% using MRA, while Kim and Lee [123] identified the PPOA in 0.26% utilizing CTA, and Vasovic et al. [124] reported an incidence of 0.42% through dissections. Notably, intriguing case reports have also emerged, with Radoi et al. [125] describing the coexistence of the PPOA and the azygos pericallosal artery, and Triantafyllou et al. [126] identifying the concomitance of the PPOA, accessory MCA, and early bifurcated ACA. Both cases were documented utilizing CTA. Kim and Lee [123] classified the POA into distinct variants based on its termination and anatomical characteristics: Type 1—the PPOA terminates as a distal ACA; it typically originates from the internal carotid artery, A1 segment, or A1–A2 junction and follows an anterior path along the olfactory tract before turning posteriorly. Type 2—the PPOA ends as the ethmoidal artery, passing through the cribriform plate to supply the nasal cavity. Also, they observed a unique variant of the PPOA that terminates as a distal MCA. This variant is thought to represent remnants of the lateral olfactory branches and was introduced to reflect cases where the PPOA connects to the MCA instead of the ACA. The clinical significance of this rare variation is that aneurysms may develop at the tip of the hairpin turn due to the altered hemodynamics and increased stress at this location [122,125]. Furthermore, its presence should also be anticipated preoperatively for anterior skull base approaches [126]. Another variation that persists from the fetal cerebral arterial circle is the infraoptic course of the ACA, located beneath the ON, which has also been referred to as “carotid-anterior cerebral anastomosis.” Uchino et al. [127] reported an incidence of 0.086% for this scarce variation. Recent studies illustrate that “carotid-anterior cerebral anastomosis” is a scarce variant, while the “infraoptic course” represents a possible morphological and positional variant with a prevalence of 14.48% [128]. “Carotid-anterior cerebral anastomosis” is frequently associated with cerebral aneurysms, particularly at the AComA complex, likely resulting from the hemodynamic stress induced by the abnormal blood flow [127]. Nevertheless, the “infraoptic course” significantly alters the neurosurgical triangles of the skull base, such as the opticocarotid and supracarotid triangles [128]. Therefore, preoperative awareness of this topographical variant of the ACA is of utmost importance, whether through MRA [127] or CTA [128].

Recognizing the limitations of this systematic review is essential, particularly through the lens of meta-analysis. Many included studies demonstrated a notable risk of bias, and several pooled prevalence estimates showed substantial heterogeneity—a common issue across anatomical meta-analyses [9]. Moreover, inconsistent or incomplete reporting of variant laterality and patient sex limited our ability to perform specific subgroup analyses.



**Figure 6.** The fenestration (Fen) of the A1-A2 junction of the anterior cerebral artery (ACA) is presented on magnetic resonance angiography through three-dimensional (3D) reconstruction (A) and 3D MPR coronal (B) and sagittal slices (C). ICA—internal carotid artery; MCA—middle cerebral artery; L—left; and R—right.

## 5. Conclusions

This systematic review and meta-analysis provide an updated, evidence-based synthesis of ACA morphological variations and their pooled prevalence. The typical ACA configuration was observed in 93.75% of cases, with the aACA being the most common variant at 1.99%. While imaging modality influenced prevalence estimates, CTA, MRA, and DSA proved reliable for identifying these variants. Importantly, many ACA alterations are

clinically significant due to their association with aneurysm formation and compromised collateral flow. Accurate recognition and documentation of these variants are essential for neuroradiologists and neurosurgeons in diagnostic and preoperative settings.

**Supplementary Materials:** The following supporting information can be downloaded at: <https://www.mdpi.com/article/10.3390/diagnostics15151893/s1>, Table S1: PRISMA 2020 Checklist.

**Author Contributions:** Conceptualization, G.T. (George Triantafyllou), I.P. and M.P.; methodology, G.T. (George Triantafyllou), I.P., K.K. and P.P.-M.; software, G.T. (George Triantafyllou), J.J.V.-F., J.S.-G., A.B.-M. and A.R.-V.; validation, P.P.-M., N.-A.A., A.S. and G.T. (George Tsakotos); investigation, G.T. (George Triantafyllou), I.P., K.K., P.P.-M. and J.J.V.-F.; data curation, J.S.-G., A.B.-M., A.R.-V., N.-A.A., A.S. and G.T. (George Tsakotos); writing—original draft preparation, G.T. (George Triantafyllou), I.P. and M.P.; writing—review and editing, P.P.-M., J.J.V.-F., J.S.-G., A.B.-M., A.R.-V., N.-A.A., A.S. and G.T. (George Tsakotos); supervision, M.P. All authors have read and agreed to the published version of the manuscript.

**Funding:** This research received no external funding.

**Institutional Review Board Statement:** The figures were obtained from an archive of the General Hospital of Nikaia-Piraeus after ethical approval (number of approval: 56485; date: 13 November 2024).

**Informed Consent Statement:** Informed consent from the patients was waived due to the ethical approval from the responsible authorities.

**Data Availability Statement:** All the data are available upon reasonable request to the corresponding author.

**Conflicts of Interest:** The authors declare no conflicts of interest.

## References

1. Triantafyllou, G.; Papadopoulos-Manolarakis, P.; Tsanis, G.; Papanagiotou, P.; Tsakotos, G.; Piagkou, M. “Complete” Duplication of the Posterior Cerebral Artery: A Rare Variant Detected on Computed Tomography Angiography. *Anat. Sci. Int.* **2024**, *100*, 370–374. [[CrossRef](#)]
2. Triantafyllou, G.; Melissanidis, S.; Olewnik, Ł.; Papanagiotou, P.; Takato’s, G.; Zielinska, N.; Vassiou, K.; Piagkou, M. A Bilateral Fetal Origin of the Posterior Cerebral Artery Coexisting with an Absent A1 Segment of the Anterior Cerebral Artery. *Folia Morphol.* **2024**. [[CrossRef](#)]
3. Tudose, R.C.; Toader, C.; Rusu, M.C. A Case of Occipital Artery Originating from the Vertebral Artery. *Anat. Cell Biol.* **2024**, *58*, 122–126. [[CrossRef](#)]
4. Standring, S.; Anand, N.; Birch, R.; Collins, P.; Crossman, A.; Gleeson, M.; Jawaheer, G.; Smith, A.; Spratt, J.; Stringer, M.; et al. *Gray’s Anatomy: The Anatomical Basis of Clinical Practice*, 41st ed.; Elsevier: London, UK, 2016.
5. Tubbs, R.S.; Shoja, M.M.; Loukas, M. *Bergman’s Comprehensive Encyclopedia of Human Anatomic Variation*; John Wiley & Sons: Hoboken, NJ, USA, 2016.
6. Uchino, A.; Nomiyama, K.; Takase, Y.; Kudo, S. Anterior Cerebral Artery Variations Detected by MR Angiography. *Neuroradiology* **2006**, *48*, 647–652. [[CrossRef](#)]
7. Triantafyllou, G.; Tudose, R.C.; Tsiouris, C.; Tsakotos, G.; Loukas, M.; Tubbs, R.S.; Kalamatianos, T.; Chrissicopoulos, C.; Al-Nasraoui, K.; Koutserimpas, C.; et al. The Anterior Communicating Artery Variants: A Meta-Analysis with a Proposed Classification System. *Surg. Radiol. Anat.* **2024**, *46*, 697–716. [[CrossRef](#)] [[PubMed](#)]
8. Fotakopoulos, G.; Brotis, A.; Fotakopoulou, O.; Gatos, C.; Mantzaris, K.; Georgakopoulou, V.; Sklapani, P.; Trakas, N.; Fountas, K. Prevalence of ACA Variations: A Systematic Review and Meta-analysis. *Med. Int.* **2024**, *4*, 54. [[CrossRef](#)] [[PubMed](#)]
9. Henry, B.M.; Tomaszewski, K.A.; Walocha, J.A. Methods of Evidence-Based Anatomy: A Guide to Conducting Systematic Reviews and Meta-Analysis of Anatomical Studies. *Ann. Anat.* **2016**, *205*, 16–21. [[CrossRef](#)] [[PubMed](#)]
10. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. *BMJ* **2021**, *372*, 71. [[CrossRef](#)]
11. Triantafyllou, G.; Papadopoulos-Manolarakis, P.; Tudose, R.C.; Rusu, M.C.; Tsakotos, G.; Piagkou, M. Prevalence of Suboccipital and Intradural Vertebral Artery Variants: A Systematic Review with Meta-Analysis. *Neuroradiology* **2025**, *1*–11. [[CrossRef](#)]

12. Triantafyllou, G.; Paschopoulos, I.; Duparc, F.; Tsakotos, G.; Papadopoulos-Manolarakis, P.; Piagkou, M. The Anatomy of the Stylohyoid Chain: A Systematic Review with Meta-Analysis. *Diagnostics* **2025**, *15*, 925. [\[CrossRef\]](#)

13. Henry, B.M.; Tomaszewski, K.A.; Ramakrishnan, P.K.; Roy, J.; Vikse, J.; Loukas, M.; Tubbs, R.S.; Walocha, J.A. Development of the Anatomical Quality Assessment (AQUA) Tool for the Quality Assessment of Anatomical Studies Included in Meta-Analyses and Systematic Reviews. *Clin. Anat.* **2017**, *30*, 6–13. [\[CrossRef\]](#)

14. Furuya-Kanamori, L.; Barendregt, J.J.; Doi, S.A.R. A New Improved Graphical and Quantitative Method for Detecting Bias in Meta-Analysis. *Int. J. Evid.-Based Healthc.* **2018**, *16*, 195–203. [\[CrossRef\]](#)

15. Schwarzer, G.; Rücker, G.; Semrau, C. LFK Index Does Not Reliably Detect Small-study Effects in Meta-analysis: A Simulation Study. *Res. Synth. Methods* **2024**, *15*, 603–615. [\[CrossRef\]](#)

16. Ardakani, S.K.; Dadmehr, M.; Nejat, F.; Ansari, S.; Eftekhar, B.; Tajik, P.; El Khashab, M.; Yazdani, S.; Ghodsi, M.; Mahjoub, F.; et al. The Cerebral Arterial Circle (Circulus Arteriosus Cerebri). *Pediatr. Neurosurg.* **2008**, *44*, 388–392. [\[CrossRef\]](#)

17. Avci, E.; Fossett, D.; Erdogan, A.; Egemen, N.; Attar, A.; Aslan, M. Perforating Branches of the Anomalous Anterior Communicating Complex. *Clin. Neurol. Neurosurg.* **2001**, *103*, 19–22. [\[CrossRef\]](#)

18. Baptista, A.G. Studies on the Arteries of the Brain. *Neurology* **1963**, *13*, 825. [\[CrossRef\]](#)

19. Beyhan, M.; Gökc, E.; Karakuş, K. Radiological Classification of Azygos Anterior Cerebral Artery and Evaluation of the Accompanying Vascular Anomalies. *Surg. Radiol. Anat.* **2020**, *42*, 1345–1354. [\[CrossRef\]](#) [\[PubMed\]](#)

20. Bharatha, A.; Aviv, R.I.; White, J.; Fox, A.J.; Symons, S.P. Intracranial Arterial Fenestrations: Frequency on CT Angiography and Association with Other Vascular Lesions. *Surg. Radiol. Anat.* **2008**, *30*, 397–401. [\[CrossRef\]](#)

21. Chrissicopoulos, C.; Mavrovounis, G.; Piagkou, M.; Triantafyllou, G.; Nasis, N.; Stranjalis, G.; Andreou, A.; Kalamatianos, T. The Anatomical Variation of the Distal Anterior Cerebral Artery: An Angiographic Study in a Greek Population Sample. *Cureus* **2024**, *16*, e54800. [\[CrossRef\]](#) [\[PubMed\]](#)

22. Chuang, Y.-M.; Liu, C.-Y.; Pan, P.-J.; Lin, C.-P. Anterior Cerebral Artery A1 Segment Hypoplasia May Contribute to A1 Hypoplasia Syndrome. *Eur. Neurol.* **2007**, *57*, 208–211. [\[CrossRef\]](#) [\[PubMed\]](#)

23. Cilliers, K.; Vorster, W.; Page, B.J. The Anatomical Variation of the Circulus Arteriosus Cerebri in a Cadaver Cohort Representing the Population Dynamics of the Western Cape. *Br. J. Neurosurg.* **2018**, *32*, 61–67. [\[CrossRef\]](#) [\[PubMed\]](#)

24. Cui, Y.; Xu, T.; Chen, J.; Tian, H.; Cao, H. Anatomic Variations in the Anterior Circulation of the Circle of Willis in Cadaveric Human Brains. *Int. J. Clin. Exp. Med.* **2015**, *8*, 15005–15010.

25. De Silva, K.R.D.; Silva, R.; Gunasekera, W.S.L.; Jayesekera, R. Prevalence of Typical Circle of Willis and the Variation in the Anterior Communicating Artery: A Study of a Sri Lankan Population. *Ann. Indian Acad. Neurol.* **2009**, *12*, 157–161. [\[CrossRef\]](#)

26. Dharmasaroja, P.A.; Uransilp, N.; Piyabhan, P. Fetal Origin of Posterior Cerebral Artery Related to Poor Collaterals in Patients with Acute Ischemic Stroke. *J. Clin. Neurosci.* **2019**, *68*, 158–161. [\[CrossRef\]](#)

27. Dumitrescu, A.M.; Eva, L.; Haba, D.; Cucu, A.I.; Dumitrescu, G.F.; Burduloi, V.M.; Dima-Cozma, L.C.; Vatavu, R.; Moroşanu, G.C.; Sava, A. Anatomical Study of Circle of Willis on Fresh Autopsied Brains. A Study of a Romanian Population. *Rom. J. Morphol. Embryol.* **2022**, *63*, 395–406. [\[CrossRef\]](#) [\[PubMed\]](#)

28. Dunker, R.O.; Harris, A.B. Surgical Anatomy of the Proximal Anterior Cerebral Artery. *J. Neurosurg.* **1976**, *44*, 359–367. [\[CrossRef\]](#) [\[PubMed\]](#)

29. Eftekhar, B.; Dadmehr, M.; Ansari, S.; Ghodsi, M.; Nazparvar, B.; Katabchi, E. Are the Distributions of Variations of Circle of Willis Different in Different Populations?—Results of an Anatomical Study and Review of Literature. *BMC Neurol.* **2006**, *6*, 22. [\[CrossRef\]](#)

30. Fawcett, E.; Blachford, J.V. The Circle of Willis: An Examination of 700 Specimens. *J. Anat. Physiol.* **1905**, *40*, 63.2–70.

31. Ferré, J.-C.; Niederberger, E.; Morandi, X.; Raoult, H.; Carsin-Nicol, B.; Gauvrit, J.-Y. Anatomical Variations of the Anterior Cerebral Arterial Circle Visualized by Multidetector Computed Tomography Angiography: Comparison with 3D Rotational Angiography. *J. Neuroradiol.* **2013**, *40*, 112–120. [\[CrossRef\]](#)

32. Fisher, C.M. The Circle of Willis: Anatomical Variations. *Ann. Vasc. Dis.* **1965**, *2*, 99–105.

33. Fredon, F.; Baudouin, M.; Hardy, J.; Kouirira, A.; Jamilloux, L.; Taibi, A.; Mabit, C.; Valleix, D.; Rouchaud, A.; Durand-Fontanier, S. An MRI Study of Typical Anatomical Variants of the Anterior Communicating Artery Complex. *Surg. Radiol. Anat.* **2021**, *43*, 1983–1988. [\[CrossRef\]](#) [\[PubMed\]](#)

34. Furuichi, K.; Ishikawa, A.; Uwabe, C.; Makishima, H.; Yamada, S.; Takakuwa, T. Variations of the Circle of Willis at the End of the Human Embryonic Period. *Anat. Rec.* **2018**, *301*, 1312–1319. [\[CrossRef\]](#)

35. Gomes, F.B.; Dujovny, M.; Umansky, F.; Berman, S.K.; Diaz, F.G.; Ausman, J.I.; Mirchandani, H.G.; Ray, W.J. Microanatomy of the Anterior Cerebral Artery. *Surg. Neurol.* **1986**, *26*, 129–141. [\[CrossRef\]](#)

36. Gunnal, S.A.; Wabale, R.N.; Farooqui, M.S. Variations of Anterior Cerebral Artery in Human Cadavers. *Neurol. Asia* **2013**, *18*, 249–259.

37. Halama, D.; Merkel, H.; Werdehausen, R.; Gaber, K.; Schob, S.; Quäschling, U.; Ziganshyna, S.; Hoffmann, K.-T.; Lindner, D.; Richter, C. Reference Values of Cerebral Artery Diameters of the Anterior Circulation by Digital Subtraction Angiography: A Retrospective Study. *Diagnostics* **2022**, *12*, 2471. [\[CrossRef\]](#) [\[PubMed\]](#)

38. Hamidi, C.; Bükte, Y.; Hattapoğlu, S.; Ekici, F.; Tekbaş, G.; Önder, H.; Gümüş, H.; Bilici, A. Display with 64-Detector MDCT Angiography of Cerebral Vascular Variations. *Surg. Radiol. Anat.* **2013**, *35*, 729–736. [\[CrossRef\]](#)

39. Han, A.; Yoon, D.Y.; Chang, S.K.; Lim, K.J.; Cho, B.-M.; Shin, Y.C.; Kim, S.S.; Kim, K.H. Accuracy of CT Angiography in the Assessment of the Circle of Willis: Comparison of Volume-Rendered Images and Digital Subtraction Angiography. *Acta Radiol.* **2011**, *52*, 889–893. [\[CrossRef\]](#)

40. Hashemi, S.M.; Mahmoodi, R.; Amirjamshidi, A. Variations in the Anatomy of the Willis' Circle: A 3-Year Cross-Sectional Study from Iran (2006–2009). Are the Distributions of Variations of Circle of Willis Different in Different Populations? Result of an Anatomical Study and Review of Literature. *Surg. Neurol. Int.* **2013**, *4*, 65. [\[CrossRef\]](#)

41. Hong, J.M.; Lee, J.S.; Shin, D.H.; Yong, S.W. Hemodynamic Impact of Fetal-Variant Willisian Circle on Cerebral Circulation: A Duplex Ultrasonography Study. *Eur. Neurol.* **2011**, *65*, 340–345. [\[CrossRef\]](#)

42. Huber, P.; Braun, J.; Hirschmann, D.; Agyeman, J.F. Incidence of Berry Aneurysms of the Unpaired Pericallosal Artery: Angiographic Study. *Neuroradiology* **1980**, *19*, 143–147. [\[CrossRef\]](#) [\[PubMed\]](#)

43. Iqbal, S. A Comprehensive Study of the Anatomical Variations of the Circle of Willis in Adult Human Brains. *J. Clin. Diagn. Res.* **2013**, *7*, 2423–2427. [\[CrossRef\]](#) [\[PubMed\]](#)

44. Jain, K.K. Some Observations on the Anatomy of the Middle Cerebral Artery. *Can. J. Surg.* **1964**, *7*, 134–139.

45. Jiménez-Sosa, M.S.; Cantu-Gonzalez, J.R.; Morales-Avalos, R.; de la Garza-Castro, O.; Quiroga-Garza, A.; Pinales-Razo, R.; Elizondo-Riojas, G.; Elizondo-Omaña, R.E.; Guzmán- López, S. Anatomical Variants of Anterior Cerebral Arterial Circle: A Study by Multidetector Computerized 3D Tomographic Angiography. *Int. J. Morphol.* **2017**, *35*, 1121–1128. [\[CrossRef\]](#)

46. Kahilogullari, G.; Comert, A.; Arslan, M.; Esmer, A.F.; Tuccar, E.; Elhan, A.; Tubbs, R.S.; Ugur, H.C. Callosal Branches of the Anterior Cerebral Artery: An Anatomical Report. *Clin. Anat.* **2008**, *21*, 383–388. [\[CrossRef\]](#)

47. Kamath, S. Observations on the Length and Diameter of Vessels Forming the Circle of Willis. *J. Anat.* **1981**, *133*, 419–423.

48. Kannabathula, A.B.; Rai, G.; Sunam, H. Anatomical variations of anterior cerebral artery and anterior communicating artery: A cadaveric study. *Int. J. Anat. Res.* **2017**, *5*, 3882–3890. [\[CrossRef\]](#)

49. Kapoor, K.; Singh, B.; Dewan, L.I.J. Variations in the Configuration of the Circle of Willis. *Anat. Sci. Int.* **2008**, *83*, 96–106. [\[CrossRef\]](#)

50. Karatas, A.; Yilmaz, H.; Coban, G.; Koker, M.; Uz, A. The Anatomy of Circulus Arteriosus Cerebri (Circle of Willis): A Study in Turkish Population. *Turk. Neurosurg.* **2015**, *26*, 54–61. [\[CrossRef\]](#) [\[PubMed\]](#)

51. Kaspera, W.; Ładziński, P.; Larysz, P.; Hebda, A.; Ptaszkiewicz, K.; Kopera, M.; Larysz, D. Morphological, Hemodynamic, and Clinical Independent Risk Factors for Anterior Communicating Artery Aneurysms. *Stroke* **2014**, *45*, 2906–2911. [\[CrossRef\]](#) [\[PubMed\]](#)

52. Kayembe, K.N.; Sasahara, M.; Hazama, F. Cerebral Aneurysms and Variations in the Circle of Willis. *Stroke* **1984**, *15*, 846–850. [\[CrossRef\]](#)

53. Kedia, S.; Daisy, S.; Mukherjee, K.; Salunke, P.; Srinivasa, R.; Narain, M. Microsurgical Anatomy of the Anterior Cerebral Artery in Indian Cadavers. *Neurol. India* **2013**, *61*, 117–121. [\[CrossRef\]](#) [\[PubMed\]](#)

54. Klimek-Piotrowska, W.; Rybicka, M.; Wojnarska, A.; Wójtowicz, A.; Koziej, M.; Hołda, M.K. A Multitude of Variations in the Configuration of the Circle of Willis: An Autopsy Study. *Anat. Sci. Int.* **2016**, *91*, 325–333. [\[CrossRef\]](#)

55. Jalali Kondori, B.; Azemati, F.; Dadseresht, S. Magnetic Resonance Angiographic Study of Anatomic Variations of the Circle of Willis in a Population in Tehran. *Arch. Iran. Med.* **2017**, *20*, 235–239.

56. Kovač, J.D.; Stanković, A.; Stanković, D.; Kovač, B.; Šaranović, D. Intracranial Arterial Variations: A Comprehensive Evaluation Using CT Angiography. *Med. Sci. Monit.* **2014**, *20*, 420–427. [\[CrossRef\]](#) [\[PubMed\]](#)

57. Krabbe-Hartkamp, M.J.; van der Grond, J.; de Leeuw, F.E.; de Groot, J.C.; Algra, A.; Hillen, B.; Breteler, M.M.; Mali, W.P. Circle of Willis: Morphologic Variation on Three-Dimensional Time-of-Flight MR Angiograms. *Radiology* **1998**, *207*, 103–111. [\[CrossRef\]](#) [\[PubMed\]](#)

58. Krystkiewicz, K.; Ciszek, B.; Szylberg, Ł.; Tosik, M.; Harat, M. Morphological Analysis of Cerebral Artery Fenestrations and Their Correlation with Intracranial Aneurysms. *World Neurosurg.* **2021**, *156*, e85–e92. [\[CrossRef\]](#)

59. Krzyżewski, R.M.; Tomaszewski, K.A.; Kochana, M.; Kopeć, M.; Klimek-Piotrowska, W.; Walocha, J.A. Anatomical Variations of the Anterior Communicating Artery Complex: Gender Relationship. *Surg. Radiol. Anat.* **2015**, *37*, 81–86. [\[CrossRef\]](#)

60. Kulenović, A.; Dilberović, F.; Ovcina, F. Variation in the Flow and Branching of the Anterior and Middle Cerebral Arteries. *Med. Arh.* **2003**, *57*, 3–5.

61. Kwak, R.; Niizuma, H.; Hatanaka, M.; Suzuki, J. Anterior Communicating Artery Aneurysms with Associated Anomalies. *J. Neurosurg.* **1980**, *52*, 162–164. [\[CrossRef\]](#)

62. Kwon, H.-M.; Lee, Y.-S. Transcranial Doppler Sonography Evaluation of Anterior Cerebral Artery Hypoplasia or Aplasia. *J. Neurol. Sci.* **2005**, *231*, 67–70. [\[CrossRef\]](#)

63. Lee, J.-H.; Chang, C.-H.; Jung, Y.-J.; Kim, J.-H. The Relationship Between the Direction of Putaminal Intracerebral Hemorrhage and Anterior Cerebral Artery Predominance. *World Neurosurg.* **2017**, *107*, 211–215. [\[CrossRef\]](#) [\[PubMed\]](#)

64. Lehecka, M.; Dashti, R.; Hernesniemi, J.; Niemelä, M.; Koivisto, T.; Ronkainen, A.; Rinne, J.; Jääskeläinen, J. Microneurosurgical Management of Aneurysms at the A2 Segment of Anterior Cerebral Artery (Proximal Pericallosal Artery) and Its Frontobasal Branches. *Surg. Neurol.* **2008**, *70*, 232–246. [\[CrossRef\]](#) [\[PubMed\]](#)

65. Lemay, M.; Gooding, C.A. The clinical significance of the azygos anterior cerebral artery (A.C.A.). *Am. J. Roentgenol.* **1966**, *98*, 602–610. [\[CrossRef\]](#) [\[PubMed\]](#)

66. López-Sala, P.; Alberdi, N.; Mendigaña, M.; Bacaicoa, M.-C.; Cabada, T. Anatomical Variants of Anterior Communicating Artery Complex. A Study by Computerized Tomographic Angiography. *J. Clin. Neurosci.* **2020**, *80*, 182–187. [\[CrossRef\]](#)

67. Macchi, C.; Catini, C.; Gulisano, M.; Pacini, P.; Cecchi, F.; Corcos, L.; Brizzi, E. Magnetic Resonance Angiographic Evaluation of Circulus Arteriosus Cerebri (Circle of Willis): A Morphologic Study in 100 Human Healthy Subjects. *Ital. J. Anat. Embryol.* **1996**, *101*, 115–123.

68. Madkour, N.A.A. Magnetic Resonance Angiography in Assessment of Anomalies of Anterior Cerebral Artery in Adults. *Anat. Cell Biol.* **2023**, *56*, 469–473. [\[CrossRef\]](#)

69. Malamateniou, C.; Adams, M.E.; Srinivasan, L.; Allsop, J.M.; Counsell, S.J.; Cowan, F.M.; Hajnal, J.V.; Rutherford, M.A. The Anatomic Variations of the Circle of Willis in Preterm-at-Term and Term-Born Infants: An MR Angiography Study at 3T. *Am. J. Neuroradiol.* **2009**, *30*, 1955–1962. [\[CrossRef\]](#)

70. Marinković, S.; Milisavljević, M.; Marinković, Z. Branches of the Anterior Communicating Artery. *Acta Neurochir.* **1990**, *106*, 78–85. [\[CrossRef\]](#)

71. Paul, S.; Mishra, S. Variations of the Anterior Cerebral Artery in Human Cadavers: A Dissection Study. *J. Anat. Soc. India* **2004**, *53*, 15–16.

72. Nathal, E.; Yasui, N.; Sampei, T.; Suzuki, A. Intraoperative Anatomical Studies in Patients with Aneurysms of the Anterior Communicating Artery Complex. *J. Neurosurg.* **1992**, *76*, 629–634. [\[CrossRef\]](#)

73. Nordon, D.G.; Rodriguez, O.F., Jr. Variations in the Brain Circulation—the Circle of Willis. *Braz. J. Morphol. Sci.* **2012**, *29*, 243–247.

74. Nowinski, W.L.; Thirunavuukarasu, A.; Volkau, I.; Marchenko, Y.; Aminah, B.; Puspitasari, F.; Runge, V.M. A Three-Dimensional Interactive Atlas of Cerebral Arterial Variants. *Neuroinformatics* **2009**, *7*, 255–264. [\[CrossRef\]](#)

75. Nyasa, C.; Mwakikunga, A.; Tembo, L.H.; Dzamalala, C.; Ihunwo, A.O. Anatomical Variations and Morphometric Properties of the Circulus Arteriosus Cerebri in a Cadaveric Malawian Population. *Folia Morphol.* **2021**, *80*, 820–826. [\[CrossRef\]](#) [\[PubMed\]](#)

76. Ogawa, A.; Suzuki, M.; Sakurai, Y.; Yoshimoto, T. Vascular Anomalies Associated with Aneurysms of the Anterior Communicating Artery: Microsurgical Observations. *J. Neurosurg.* **1990**, *72*, 706–709. [\[CrossRef\]](#)

77. Ogengo, J.A.; Cheruiyot, I.; Amuti, T.; Ongidi, I.; Mwachaka, P.; Olabu, B.; Kitunguu, P.; Sinkeet, S. Cerebral Artery Hypoplasia in a Select Adult Kenyan Population. *J. Neurosci. Rural Pract.* **2019**, *10*, 423–429. [\[CrossRef\]](#)

78. Orakdogen, M.; Emon, S.T.; Somay, H.; Engin, T.; Is, M.; Hakan, T. Vascular Variations Associated with Intracranial Aneurysms. *Turk. Neurosurg.* **2016**, *27*, 853–862. [\[CrossRef\]](#)

79. Ozaki, T.; Handa, H.; Tomimoto, K.; Hazama, F. Anatomical Variations of the Arterial System of the Base of the Brain. *Nihon Geka Hokan* **1977**, *46*, 3–17. [\[PubMed\]](#)

80. Papantchev, V.; Stoinova, V.; Aleksandrov, A.; Todorova-Papantcheva, D.; Hristov, S.; Petkov, D.; Nachev, G.; Ovtscharoff, W. The Role of Willis Circle Variations during Unilateral Selective Cerebral Perfusion: A Study of 500 Circles<sup>†</sup>. *Eur. J. Cardio-Thorac. Surg.* **2013**, *44*, 743–753. [\[CrossRef\]](#) [\[PubMed\]](#)

81. Pashaj, S.; Merz, E. Prenatal Demonstration of Normal Variants of the Pericallosal Artery by 3D Ultrasound. *Ultraschall Med.-Eur. J. Ultrasound* **2013**, *35*, 129–136. [\[CrossRef\]](#)

82. Perlmutter, D.; Rhoton, A.L. Microsurgical Anatomy of the Distal Anterior Cerebral Artery. *J. Neurosurg.* **1978**, *49*, 204–228. [\[CrossRef\]](#)

83. Puchades-Orts, A.; Nombela-Gomez, M.; Ortuño-Pacheco, G. Variation in Form of Circle of Willis: Some Anatomical and Embryological Considerations. *Anat. Rec.* **1976**, *185*, 119–123. [\[CrossRef\]](#)

84. Qiu, C.; Zhang, Y.; Xue, C.; Jiang, S.; Zhang, W. MRA Study on Variation of the Circle of Willis in Healthy Chinese Male Adults. *BioMed Res. Int.* **2015**, *2015*, 976340. [\[CrossRef\]](#) [\[PubMed\]](#)

85. RING, B.A.; Waddington, M.M. Roentgenographic anatomy of the pericallosal arteries. *Am. J. Roentgenol.* **1968**, *104*, 109–118. [\[CrossRef\]](#)

86. Riveros, A.; Vega, C.; Negroni, M.; Villagrán, F.; Binvignat, O.; Olave, E. Variations of the Cerebral Arterial Circle. Morphological and Clinical Analysis. *Int. J. Morphol.* **2022**, *40*, 632–639. [\[CrossRef\]](#)

87. Saha, A.; Bhattacharya, A.; Ghosh, S.P.; Roy, S.R. Morphology and Morphometry of the Anterior Cerebral-Anterior Communicating Artery Complex. *Surg. Radiol. Anat.* **2024**, *46*, 1585–1593. [\[CrossRef\]](#) [\[PubMed\]](#)

88. Saikia, B.; Talukdar, K.; Sarma, J.; Sarma, A.; Madaan, S. Study of Variations of the Anterior Cerebral Artery in Human Brain. *Natl. J. Clin. Anat.* **2013**, *2*, 122–127. [\[CrossRef\]](#)

89. Sanders, W.P.; Sorek, P.A.; Mehta, B.A. Fenestration of Intracranial Arteries with Special Attention to Associated Aneurysms and Other Anomalies. *AJNR Am. J. Neuroradiol.* **1993**, *14*, 675–680. [\[PubMed\]](#)

90. Serizawa, T.; Saeki, N.; Yamaura, A. Microsurgical Anatomy and Clinical Significance of the Anterior Communicating Artery and Its Perforating Branches. *Neurosurgery* **1997**, *40*, 1211–1218. [\[CrossRef\]](#) [\[PubMed\]](#)

91. Shatri, J.; Cerkezi, S.; Ademi, V.; Reci, V.; Bexheti, S. Anatomical Variations and Dimensions of Arteries in the Anterior Part of the Circle of Willis. *Folia Morphol.* **2019**, *78*, 259–266. [\[CrossRef\]](#)

92. Sibiya, G.; Omotoso, B.R.; Harrichandparsad, R.; Lazarus, L. Exploring the Anatomical Configurations of the Cerebral Arteries in a Cohort of South African Patients. *Sci. Rep.* **2024**, *14*, 6060. [\[CrossRef\]](#)

93. Siddiqi, H.; Tahir, M.; Lone, K.P. Variations in Cerebral Arterial Circle of Willis in Adult Pakistani Population. *J. Coll. Physicians Surg. Pak.* **2013**, *23*, 615–619.

94. Songsaeng, D.; Geibprasert, S.; Willinsky, R.; Tymianski, M.; TerBrugge, K.G.; Krings, T. Impact of Anatomical Variations of the Circle of Willis on the Incidence of Aneurysms and Their Recurrence Rate Following Endovascular Treatment. *Clin. Radiol.* **2010**, *65*, 895–901. [\[CrossRef\]](#) [\[PubMed\]](#)

95. Soundarya, P.; Pavazhakurinji, T.N.; Jayanthi, J. Study of variations in anterior cerebral artery in human cadavers. *Int. J. Acad. Med. Pharm.* **2024**, *6*, 166–169.

96. Stefani, M.A.; Schneider, F.L.; Marrone, A.C.H.; Severino, A.G.; Jackowski, A.P.; Wallace, M.C. Anatomic Variations of Anterior Cerebral Artery Cortical Branches. *Clin. Anat.* **2000**, *13*, 231–236. [\[CrossRef\]](#)

97. Stefani, M.A.; Schneider, F.L.; Marrone, A.C.H.; Severino, A.G. Influence of the Gender on Cerebral Vascular Diameters Observed during the Magnetic Resonance Angiographic Examination of Willis Circle. *Braz. Arch. Biol. Technol.* **2013**, *56*, 45–52. [\[CrossRef\]](#)

98. Swetha, B. Anatomic Features of Distal Anterior Cerebral Artery Supply on Corpus Callosum: A Detailed Study on 140 Cerebral Hemispheres. *J. Neurol. Sci.* **2012**, *29*, 46–56.

99. Tanaka, H.; Fujita, N.; Enoki, T.; Matsumoto, K.; Watanabe, Y.; Murase, K.; Nakamura, H. Relationship between Variations in the Circle of Willis and Flow Rates in Internal Carotid and Basilar Arteries Determined by Means of Magnetic Resonance Imaging with Semiautomated Lumen Segmentation: Reference Data from 125 Healthy Volunteers. *AJNR Am. J. Neuroradiol.* **2006**, *27*, 1770–1775.

100. Tao, X.; Yu, X.J.; Bhattarai, B.; Li, T.H.; Jin, H.; Wei, G.W.; Ming, J.S.; Ren, W.; Jiong, C. Microsurgical Anatomy of the Anterior Communicating Artery Complex in Adult Chinese Heads. *Surg. Neurol.* **2006**, *65*, 155–161. [\[CrossRef\]](#) [\[PubMed\]](#)

101. Thenmozhi, A.; Kalpana, R.; Subadha, C. Anatomic variants of the anterior part of the cerebral arterial circle: A cadaveric study. *Int. J. Anat. Res.* **2019**, *7*, 6516–6520. [\[CrossRef\]](#)

102. Tulleken, C.A.F. A Study of the Anatomy of the Anterior Communicating Artery with the Aid of the Operating Microscope. *Clin. Neurol. Neurosurg.* **1978**, *80*, 169–173. [\[CrossRef\]](#)

103. Ugur, H.C.; Kahilogullari, G.; Coscarella, E.; Unlu, A.; Tekdemir, I.; Morcos, J.J.; Elhan, A.; Baskaya, M.K. Arterial Vascularization of Primary Motor Cortex (Precentral Gyrus). *Surg. Neurol.* **2005**, *64*, S48–S52. [\[CrossRef\]](#) [\[PubMed\]](#)

104. Ugur, H.C.; Kahilogullari, G.; Esmer, A.F.; Comert, A.; Odabasi, A.B.; Tekdemir, I.; Elhan, A.; Kanpolat, Y. A Neurosurgical View of Anatomical Variations of the Distal Anterior Cerebral Artery: An Anatomical Study. *J. Neurosurg.* **2006**, *104*, 278–284. [\[CrossRef\]](#)

105. van der Zwan, A.; Hillen, B.; Tulleken, C.A.F.; Dujovny, M.; Dragovic, L. Variability of the Territories of the Major Cerebral Arteries. *J. Neurosurg.* **1992**, *77*, 927–940. [\[CrossRef\]](#)

106. Waaijer, A.; van Leeuwen, M.S.; van der Worp, H.B.; Verhagen, H.J.M.; Mali, W.P.T.M.; Velthuis, B.K. Anatomic Variations in the Circle of Willis in Patients with Symptomatic Carotid Artery Stenosis Assessed with Multidetector Row CT Angiography. *Cerebrovasc. Dis.* **2007**, *23*, 267–274. [\[CrossRef\]](#) [\[PubMed\]](#)

107. Wan-Yin, S.; Ming-Hua, L.; Bin-Xian, G.; Yong-Dong, L.; Hua-Qiao, T. Azygous Anterior Cerebral Artery and Associated Aneurysms: Detection and Identification Using 3-Dimensional Time-of-Flight Magnetic Resonance Angiography. *J. Neuroimaging* **2014**, *24*, 18–22. [\[CrossRef\]](#) [\[PubMed\]](#)

108. Wijesinghe, P.; Steinbusch, H.W.M.; Shankar, S.K.; Yasha, T.C.; De Silva, K.R.D. Circle of Willis Abnormalities and Their Clinical Importance in Ageing Brains: A Cadaveric Anatomical and Pathological Study. *J. Chem. Neuroanat.* **2020**, *106*, 101772. [\[CrossRef\]](#)

109. Windle, B.C. The Arteries Forming the Circle of Willis. *J. Anat. Physiol.* **1888**, *22*, 289–293.

110. Wollschlaeger, G.; Wollschlaeger, P.B.; Lucas, F.V.; Lopez, V.F. Experience and result with postmortem cerebral angiography performed as routine procedure of the autopsy. *Am. J. Roentgenol.* **1967**, *101*, 68–87. [\[CrossRef\]](#)

111. Yokuş, A.; Toprak, N.; Gündüz, A.M.; Akdeniz, H.; Akdemir, Z.; Dündar, İ.; Arslan, H. Anterior Cerebral Artery and Anterior Communicating Artery Variations: Assessment with Magnetic Resonance Angiography. *World Neurosurg.* **2021**, *155*, e203–e209. [\[CrossRef\]](#) [\[PubMed\]](#)

112. Zhao, H.; Fu, J.; Lu, Z.; Lü, H. Fenestration of the Anterior Cerebral Artery Detected by Magnetic Resonance Angiography. *Chin. Med. J.* **2009**, *122*, 1139–1142.

113. Żurada, A.; Gielecki, J.; Tubbs, R.S.; Loukas, M.; Cohen-Gadol, A.A.; Chlebiej, M.; Maksymowicz, W.; Nowak, D.; Zawiliński, J.; Michalak, M. Three-dimensional Morphometry of the A2 Segment of the Anterior Cerebral Artery with Neurosurgical Relevance. *Clin. Anat.* **2010**, *23*, 759–769. [\[CrossRef\]](#)

114. Uchino, A.; Tokushige, K. Triplicated Middle Cerebral Arteries (Duplicated and Ipsilateral Accessory) Associated with Triplicated Anterior Cerebral Arteries (Accessory) Diagnosed by Magnetic Resonance Angiography. *Surg. Radiol. Anat.* **2024**, *46*, 959–962. [\[CrossRef\]](#)

115. Altafulla, J.J.; Simonds, E.A.; Dupont, G.; Lachkar, S.; Litvack, Z.; Iwanaga, J.; Tubbs, R.S. A Median Artery of the Corpus Callosum. *Cureus* **2018**, *10*, e3355. [\[CrossRef\]](#)

116. Uchino, A.; Saito, N.; Uehara, T.; Neki, H.; Kohyama, S.; Yamane, F. True Fenestration of the Anterior Communicating Artery Diagnosed by Magnetic Resonance Angiography. *Surg. Radiol. Anat.* **2016**, *38*, 1095–1098. [\[CrossRef\]](#)

117. Uchino, A.; Saito, N.; Nagamine, Y.; Takao, M. Duplicate Origin of the Anterior Cerebral Artery Diagnosed by Magnetic Resonance Angiography: A Case Report. *Surg. Radiol. Anat.* **2016**, *38*, 1239–1241. [\[CrossRef\]](#)

118. Mincă, D.I.; Rusu, M.C.; Rădoi, P.M.; Hostiuc, S.; Toader, C. Transcallosal and Pericallosal Courses of the Anterior Cerebral Artery. *Medicina* **2022**, *58*, 1365. [\[CrossRef\]](#) [\[PubMed\]](#)

119. Triantafyllou, G.; Uchino, A.; Vassiou, K.; Tudose, R.C.; Rusu, M.C.; Vlychou, M.; Tsakotos, G.; Piagkou, M. Fenestration of the Anterior and Posterior Cerebral Arteries in Coexistence with a Contralateral Posterior Cerebral Artery of Fetal Origin. *Surg. Radiol. Anat.* **2024**, *46*, 1363–1366. [\[CrossRef\]](#) [\[PubMed\]](#)

120. Triantafyllou, G.; Papadopoulos-Manolarakis, P.; Tsakotos, G.; Piagkou, M. Concurrent Fenestrations of the Basilar and Anterior Cerebral Arteries. *J. Craniofac. Surg.* **2025**, *10*–1097. [\[CrossRef\]](#) [\[PubMed\]](#)

121. Bonasia, S.; Smajda, S.; Ciccio, G.; Bojanowski, M.W.; Robert, T. Embryology of the Anterior Communicating Artery Complex: Implications on Possible Adult Variants. *Surg. Radiol. Anat.* **2022**, *44*, 737–748. [\[CrossRef\]](#)

122. Uchino, A.; Saito, N.; Kozawa, E.; Mizukoshi, W.; Inoue, K. Persistent Primitive Olfactory Artery: MR Angiographic Diagnosis. *Surg. Radiol. Anat.* **2011**, *33*, 197–201. [\[CrossRef\]](#)

123. Kim, M.S.; Lee, G.J. Persistent Primitive Olfactory Artery: CT Angiographic Diagnosis and Literature Review for Classification and Clinical Significance. *Surg. Radiol. Anat.* **2014**, *36*, 663–667. [\[CrossRef\]](#)

124. Vasović, L.; Trandafilović, M.; Vlajković, S.; Jovanović, I.; Ugrenović, S. Persistent Primitive Olfactory Artery in Serbian Population. *BioMed Res. Int.* **2013**, *2013*, 903460. [\[CrossRef\]](#) [\[PubMed\]](#)

125. Rădoi, P.M.; Rusu, M.C.; Dincă, D.; Toader, C. Combined Rare Anatomic Variants: Persistent Primitive Olfactory Artery and Azygos Pericallosal Artery. *Surg. Radiol. Anat.* **2021**, *43*, 1305–1308. [\[CrossRef\]](#) [\[PubMed\]](#)

126. Triantafyllou, G.; Papadopoulos-Manolarakis, P.; Duparc, F.; Tsakotos, G.; Piagkou, M. Concomitance of Persistent Primitive Olfactory Artery, Accessory Middle Cerebral, and Early Bifurcated Anterior Cerebral Arteries. *Surg. Radiol. Anat.* **2025**, *47*, 138. [\[CrossRef\]](#) [\[PubMed\]](#)

127. Uchino, A.; Saito, N.; Okada, Y.; Inoue, K. Carotid–Anterior Cerebral Artery Anastomosis on MR Angiography: A University Hospital-Based Study. *Neuroradiology* **2012**, *54*, 13–18. [\[CrossRef\]](#)

128. Mincă, D.I.; Rusu, M.C.; Rădoi, P.M.; Vrapciu, A.D.; Hostiuc, S.; Toader, C. The Infraoptic or Infrachiasmatic Course of the Anterior Cerebral Artery Emerging an Elongated Internal Carotid Artery. *Tomography* **2022**, *8*, 2243–2255. [\[CrossRef\]](#)

**Disclaimer/Publisher’s Note:** The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.