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Abstract

Background: The anterior cerebral artery (ACA), a critical component of the cerebral ar-
terial circle, exhibits substantial morphological variability. While previous studies have
explored ACA morphology using cadaveric and imaging methods, a comprehensive meta-
analysis incorporating the latest evidence is lacking. Methods: Following current guide-
lines, a systematic review and meta-analysis were performed across four major databases,
supplemented by the gray literature and targeted journal searches. Ninety-nine stud-
ies, encompassing 85,316 patients, met the inclusion criteria. Statistical analyses were
conducted using R, applying random effects models to estimate pooled prevalence and
morphometric parameters. Results: The pooled prevalence of typical ACA morphology
was 93.75%, whereas variants were noted in 6.25% of cases. The predominant variation
identified was the accessory ACA (aACA) (1.99%), followed by unilateral absence of the
A1 segment (1.78%), with the latter being more frequently recognized in imaging studies
(p < 0.0001). Rare variants encompassed azygos ACA (azACA) (0.22%), fenestrated ACA
(fACA) (0.02%), and bihemispheric ACA (bACA) (0.02%). The mean diameter and length
of the A1 segment were measured at 2.10 mm and 14.24 mm, respectively. Hypoplasia
of the A1 segment (<1 mm diameter) was recorded in 3.15% of cases. The influences of
imaging modality, laterality, and population distribution on prevalence estimates were
minimal. No significant publication bias was detected. Conclusions: Although infrequent,
variants of the ACA possess significant clinical importance attributable to their correlation
with aneurysm formation and the impairment of collateral circulation. The aACA and the
absence of the A1 segment emerged as the most common variations. This meta-analysis
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presents an updated and high-quality synthesis of ACA morphology, serving as a valuable
reference for clinicians and anatomists.

Keywords: anterior cerebral artery; variation; neuroradiology; evidence-based anatomy;
meta-analysis

1. Introduction
The variability of the cerebral arterial circle is often described through (cadaveric)

dissection and imaging techniques. Documenting the typical anatomy of the brain’s
vascular supply and potential morphological variants is exceptionally straightforward
with computed tomography (CTA), magnetic resonance (MRA), or digital subtraction
angiography (DSA) [1–3].

The anterior circulation of the brain originates from the internal carotid artery (ICA)
system, comprising the anterior and middle cerebral arteries (ACA and MCA). According
to Gray’s Anatomy and Bergman’s Comprehensive Encyclopedia of Human Anatomic
Variations, the ACA is divided into three parts: from its origin to the junction with the
anterior communicating artery (AComA)—the A1 segment; from the intersection with the
AComA to the origin of the callosomarginal artery (CMA)—the A2 segment; and distal
to the origin of the CMA—the A3 segment [4,5]. The ACA’s course is also significant, as
it initially passes anteromedially to the optic nerve (ON), and then travels in the great
longitudinal fissure and around the genu of the corpus callosum [4].

Several ACA variations have been described, mainly for the A1 and proximal A2
segments. These variants include A1 hypoplasia or absence, A1 fenestration, accessory
A2 (triplicated ACA or median artery of corpus callosum), azygos ACA (azACA), and
bihemispheric ACA (bACA) [5]. All variations in the ACA were previously associated
with aneurysm formation [6]. However, it is essential to mention that variations are more
frequently located at the AComA complex [7].

Although research on ACA morphology has expanded recently, only Fotakopoulos
et al. [8] have published a systematic review with a meta-analysis. In contrast, our study
identified a substantially larger dataset and a broader spectrum of ACA variants. This meta-
analysis aims to provide a comprehensive, evidence-based overview of ACA variability
using current anatomical and statistical standards.

2. Materials and Methods
The systematic review with a meta-analysis adhered to the guidelines set forth by the

Evidence-based Anatomy Workgroup for anatomical meta-analysis [9] and the PRISMA
2020 for systematic reviews (see Supplementary Materials) [10], similar to previous stud-
ies [11,12]. The study’s protocol was not registered in any online database. The figures were
obtained from the General Hospital of Nikaia-Piraeus following ethical approval (approval
number: 56485; date: 13 November 2024).

The literature search was performed using the online databases PubMed, Google
Scholar, Scopus, and Web of Science until April 2025. The following terms were used in
various combinations: “anterior cerebral artery,” “anterior communicating artery,” “variation,”
“anterior circulation,” “cadaveric study,” “imaging study,” and “radiological study.” Furthermore,
the references of all included articles were reviewed, the gray literature was investigated,
and a comprehensive search of key anatomical journals (Annals of Anatomy, Clinical
Anatomy, Journal of Anatomy, Anatomical Record, Surgical and Radiological Anatomy,
Folia Morphologica, European Journal of Anatomy, Morphologie, Anatomical Science Inter-
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national, and Anatomy and Cell Biology) was conducted. The inclusion criteria consisted
of studies that reported the prevalence of ACA variants. Case reports, conference abstracts,
animal studies, and studies presenting irrelevant or insufficient data were excluded.

Three independent reviewers (GTr, IP, and KK) searched the literature and extracted
data into Microsoft Excel sheets. The results were compared, and the other authors resolved
any discrepancies. The Anatomical Quality Assurance (AQUA) tool, developed by the
Evidence-based Anatomy Workgroup for anatomical reviews [13], was utilized to assess
the risk of bias for each article.

A statistical meta-analysis was conducted using the open-source R programming
language and RStudio software (version 4.3.2), employing the “meta” and “metafor” pack-
ages by a single researcher (GTr). The pooled prevalence was calculated utilizing inverse
variance and random effects models. The proportion (prevalence) meta-analysis was per-
formed using the Freeman–Tukey double arcsine transformation, the DerSimonian–Laird
estimator for the between-study variance tau2, and the Jackson method for the confidence
interval of tau2 and tau. The mean (mean diameter) meta-analysis was executed using the
untransformed (raw) means, the restricted maximum likelihood estimator for tau2, and the
Q-Profile method for confidence intervals of tau2 and tau. Furthermore, several subgroup
analyses were conducted to identify variables (geographic distribution, laterality, or imaging
technique) influencing the estimated pooled prevalence and mean. A p-value of less than
0.05 was considered statistically significant. Cochran’s Q statistic was employed to evaluate
the presence of heterogeneity across studies, while the Higgins I2 statistic quantified this
heterogeneity. A Cochran’s Q p-value < 0.10 was regarded as significant. Higgins I2 values
between 0 and 40% were classified as negligible, 30–60% as moderate heterogeneity, 50–90%
as substantial heterogeneity, and 75–100% as considerable heterogeneity. To assess the
presence of a small-study effect (the phenomenon that smaller studies may exhibit differing
effects compared to larger studies), the DOI plot with the LFK index was generated for
the proportions meta-analysis [14], and the Funnel Plot with the Thomson–Sharp test was
utilized for the means meta-analysis [15].

3. Results
3.1. Search Analysis

The database search yielded 3731 articles exported to Mendeley version 2.10.9 (Elsevier,
London, UK). After excluding duplicate and irrelevant papers through title and abstract
screening, 168 studies were subjected to full-text retrieval and examination. Ultimately,
77 studies were deemed eligible for systematic review. Additionally, 22 studies were identi-
fied through our secondary investigation, which included references, the gray literature,
and an extensive search of anatomical journals. Therefore, 99 studies were included in our
systematic review with meta-analysis. Figure 1 summarizes the flow diagram of our search
analysis according to the PRISMA 2020 guidelines.

3.2. Characteristics of Eligible Studies

A total of ninety-nine (99) studies were included in this analysis, encompassing a com-
bined cohort of 85,316 patients. The average sample size per article was 862 patients. Among
the studies, fifty-four (54) were cadaveric, while forty-three (43) utilized imaging methodolo-
gies and two (2) utilized surgical methods. Concerning the imaging techniques employed,
eighteen (18) studies were based on MRA scans, seventeen (17) analyses were carried out
using CTA scans, three (3) studies employed DSA, one (1) was carried out using ultrasound
scans, one (1) combined CTA, MRA, and DSA scans, and three (3) studies did not report
the exact imaging scans used. Regarding the demographics of the studied populations,
forty-eight (48) studies were carried out on Asian populations, twenty-four (24) on European



Diagnostics 2025, 15, 1893 4 of 20

populations, twelve (12) on North American populations, six (6) on South American popu-
lations, and four (4) on African populations. The characteristics of the included studies are
summarized in Table 1.

Figure 1. The search analysis flow chart according to the PRISMA 2020 guidelines.

Table 1. The characteristics of the eligible studies, including their risk of bias assessment based on the
AQUA tool [13].

Study (Year) Population Type of Study Sample Patients’ Demographic Risk
of Bias

Ardakani et al.
(2008) [16] Asia Cadaveric 60 Fetuses and infants

(23–74 weeks; mean 48 weeks) High

Avci et al. (2001) [17] Asia Cadaveric 50 Adults High

Baptista (1963) [18] South
America Cadaveric 762 NR High

Beyhan et al. (2020) [19] Asia Imaging
(CTA/MRA/DSA) 9826 Children and adults (2–86) High

Bharatha et al. (2008) [20] North
America Imaging (CTA) 1016 Adults Low

Chrissikopoulos et al.
(2024) [21] Europe Imaging (DSA) 912 Adults High

Chuang et al. (2006) [22] Asia Imaging (MRA) 560 Adults High
Cilliers et al. (2018) [23] Africa Cadaveric 78 Adults (22–72) High

Cui et al. (2015) [24] Asia Cadaveric 90 Adults High
De Silva et al. (2009) [25] Asia Cadaveric 450 Adults (18–73) High

Dharmasaroja et al.
(2019) [26] Asia Imaging (CTA) 132 Adults High

Dumitrescu et al.
(2022) [27] Europe Cadaveric 192 Adults Low
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Table 1. Cont.

Study (Year) Population Type of Study Sample Patients’ Demographic Risk
of Bias

Dunker and Harris
(1976) [28]

North
America Cadaveric 40 Adults (41–83) High

Eftekhar et al. (2006) [29] Asia Cadaveric 204 Adults (15–75) Low
Fawcett and Blachford

(1905) [30]
North

America Cadaveric 1400 Adults High

Ferre et al. (2013) [31] Europe Imaging (CTA) 208 Adults Low
Fisher (1965) [32] America Cadaveric 1428 NR High

Fredon et al. (2021) [33] Europe Imaging (MRA) 1234 Adults (18–65) High

Furuichi et al. (2018) [34] Asia Cadaveric 40 Embryos (end of
embryonic period) Low

Gomes et al. (1986) [35] North
America Cadaveric 60 Adults Low

Gunnal (2013) [36] Asia Cadaveric 224 NR High
Halama et al. (2022) [37] Europe Imaging (DSA) 556 Adults (17–71) Low
Hamidi et al. (2013) [38] Asia Imaging (CTA) 1000 Children and adults (2–91) High

Han et al. (2011) [39] Asia Imaging (CTA) 334 Adults (mean age 50.9) High
Hashemi et al. (2013) [40] Asia Cadaveric 400 Adults (16–71) High

Hong et al. (2010) [41] Asia Imaging (CTA) 202 Children and adults (13–73) Low
Huber et al. (1980) [42] Europe Imaging (CTA) 15,564 Adults (31–69) Low
Iqbal et al. (2013) [43] Asia Cadaveric 100 NR High

Jain (1964) [44] America Cadaveric 600 NR High
Jimenez-Sosa et al.

(2017) [45]
South

America Imaging (CTA) 566 Children and adults (1–99) Low

Kahilogullari et al.
(2008) [46] Asia Cadaveric 60 Adults High

Kamath (1981) [47] Asia Cadaveric 200 NR High
Kannabathula et al.

(2017) [48] Asia Cadaveric 150 NR High

Kapoor et al. (2008) [49] Asia Cadaveric 2000 Children and adults Low
Karatas et al. (2015) [50] Asia Cadaveric 200 Adults (16–95) Low

Kaspera et al. (2014) [51] North
America Imaging (CTA) 350 Adults (18–75) Low

Kayembe et al. (1984) [52] Asia Cadaveric 88 Adults High
Kedia et al. (2013) [53] Asia Cadaveric 30 Adults High

Klimek-Piotrowska et al.
(2016) [54] Europe Cadaveric 200 Adults Low

Kondori et al. (2017) [55] Asia Imaging (MRA) 1050 Adults (25–78) Low
Kovac et al. (2014) [56] Europe Imaging (CTA) 910 Adults Low
Krabbe-Hartkamp et al.

(1998) [57] Europe Imaging (MRA) 300 Adults High

Krystiewicz et al.
(2021) [58] Europe Cadaveric 666 Adults Low

Krzyzewski et al.
(2015) [59] Europe Imaging (CTA) 822 Adults Low

Kulenovic et al.
(2003) [60] Europe Cadaveric 200 NR High

Kwak et al. (1980) [61] Asia Imaging (CTA) 592 NR High
Kwon et al. (2005) [62] Asia Imaging (MRA) 482 Adults Low

Lee et al. (2017) [63] Asia Imaging (CTA) 1560 Adults High
Lehecka et al. (2008) [64] Europe Imaging 202 NR High

LeMay and Gooding
(1966) [65]

North
America Cadaveric 214 NR High
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Table 1. Cont.

Study (Year) Population Type of Study Sample Patients’ Demographic Risk
of Bias

Lopez-Sala et al.
(2020) [66] Europe Imaging (CTA) 852 Adults High

Macchi et al. (1996) [67] Europe Imaging (MRA) 200 Adults High
Madkour (2023) [68] Asia Imaging (MRA) 148 Adults High
Malamateniou et al.

(2009) [69] Europe Imaging (MRA) 188 Neonates (25–35 weeks) High

Marinkovic et al.
(1990) [70] Europe Cadaveric 52 Adults High

Mishra et al. (2004) [71] Asia Cadaveric 100 NR High
Nathal et al. (1992) [72] Asia Surgery 268 NR High
Nordon and Rodrigues

(2012) [73]
South

America Cadaveric 100 Adults Low

Nowinski et al.
(2009) [74] Asia Imaging (MRA) 96 NR High

Nyasa et al. (2021) [75] Africa Cadaveric 48 Children and adults (3–65) Low
Ogawa et al. (1990) [76] Asia Surgery 412 NR High
Ogengo et al. (2019) [77] Africa Cadaveric 436 Adults High

Orandogen et al.
(2016) [78] Asia Imaging (DSA) 256 NR High

Ozaki et al. (1977) [79] Asia Cadaveric 292 All ages (13 h after birth to
88 years old) High

Papantchev et al.
(2013) [80] Europe Cadaveric 500 Adults (18–91) High

Pashaj et al. (2013) [81] Europe Imaging (US) 904 Fetuses (18–41 weeks) High
Perlmutter and Rhoton

(1978) [82]
North

America Cadaveric 100 Adults High

Puchades-Orts et al.
(1976) [83] Europe Cadaveric 124 NR High

Qiu et al. (2015) [84] Asia Imaging (MRA) 4492 Adults High
Ring and Waddington

(1968) [85]
North

America Cadaveric 50 NR High

Riveros (2022) [86] South
America Cadaveric 60 Adults High

Saha et al. (2024) [87] Asia Cadaveric 112 NR High
Saikia et al. (2020) [88] Asia Cadaveric 140 NR High

Sanders et al. (1943) [89] North
America Imaging 10,380 Adults Low

Serisawa et al. (1997) [90] Asia Cadaveric 60 Adults High
Shatri et al. (2019) [91] Europe Imaging (MRA) 1026 Adults Low
Sibiya et al. (2024) [92] Africa Imaging (CTA) 478 Adults Low

Siddiqi (2013) [93] Asia Cadaveric 102 Adults Low
Songsaeng et al.

(2010) [94]
North

America Imaging (MRA) 400 Adults Low

Soundarya et al.
(2024) [95] Asia Cadaveric 60 Adults High

Stefani et al. (2000) [96] South
America Cadaveric 76 NR High

Stefani et al. (2013) [97] South
America Imaging (MRA) 60 Adults Low

Swetha et al. (2012) [98] Asia Cadaveric 140 NR High
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Table 1. Cont.

Study (Year) Population Type of Study Sample Patients’ Demographic Risk
of Bias

Tanaka et al. (2006) [99] Asia Imaging (MRA) 234 Adults Low
Tao et al. (2006) [100] Asia Cadaveric 90 Adults High

Thenmonzhi et al.
(2019) [101] Asia Cadaveric 200 Adults High

Tulleken (1978) [102] Europe Cadaveric 150 NR High
Uchino et al. (2006) [6] Asia Imaging (MRA) 1782 Children and adults (0–92) High
Ugur et al. (2005) [103] Asia Cadaveric 40 Adults High
Ugur et al. (2006) [104] Asia Cadaveric 100 Adults High

Van der Zwan et al.
(1992) [105]

North
America Cadaveric 50 Children and adults (15–100) High

Waaijer et al. (2006) [106] Europe Imaging (CTA) 206 Adults High
Wan Yin et al.
(2014) [107] Asia Imaging (MRA) 7144 Adults Low

Wijesinghe et al.
(2020) [108] Asia Cadaveric 146 Adults (51–89) High

Windle (1888) [109] Europe Cadaveric 400 NR High
Wollschlaeger et al.

(1968) [110]
North

America Imaging (DSA) 582 NR High

Yokus et al. (2021) [111] Asia Imaging (MRA) 1162 Adults Low
Zhao et al. (2009) [112] Asia Imaging (MRA) 1524 Children and adults (3–88) High

Zurada et al. (2010) [113] Europe Imaging (CTA) 230 Children and adults (12–78) Low

3.3. Morphological Variations in the Anterior Cerebral Artery (ACA)

The typical morphology of the ACA was estimated to have a pooled prevalence of
93.75% (95% CI: 92.20–95.14), while the variant morphology of the ACA was calculated to
have a pooled prevalence of 6.25% (95% CI: 4.97–8.00). The distribution of nationality, type
of study (cadaveric or radiological), and imaging technique was not statistically associated
with the pooled prevalence of the variant morphology (p = 0.4857, p = 0.1312, and p = 0.1291,
respectively). The DOI plot indicated an LFK index of +0.94, suggesting no asymmetry and
the absence of small-study effects.

The most prevalent variation observed was the aACA, which demonstrated a pooled
prevalence of 1.99% (95% CI: 1.50–2.54). The factors of nationality, imaging technique, and
patient sex did not significantly influence the estimated prevalence (p = 0.6063, p = 0.9091,
and p = 0.2826, respectively). The DOI plot illustrated an LFK index of +0.24 (indicating no
asymmetry), suggesting the absence of a small-study effect.

The second most common variation was the absence of the unilateral A1 segment,
with a pooled prevalence of 1.78% (95% CI: 1.09–2.62). The nationality distribution, imaging
technique, patient’s sex, or side did not influence the pooled prevalence of A1 absence
(p = 0.2343, p = 0.8969, p = 0.5992, and p = 0.2155, respectively). However, the type of
study was a significant factor (p < 0.0001), with imaging studies showing a higher pooled
prevalence estimate than cadaveric ones (3.59% versus 0.05%, respectively). The DOI plot
indicated an LFK index of +0.17 (no asymmetry), suggesting no small-study effect.

The rarest variants included the AzACA, which had a pooled prevalence of 0.22%
(95% CI: 0.10–0.36); the fACA was observed at 0.02% (95% CI: 0.00–0.10), and the bACA
was also identified at 0.02% (95% CI: 0.02%). No variations were significantly influenced by
nationality, imaging technique, side, or the patient’s sex.
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3.4. Morphometrical Variations in the Anterior Cerebral Artery (ACA)

The pooled mean diameter of the A1 segment was 2.10 mm (95% CI: 1.87–2.34). Fur-
thermore, the hypoplastic A1 segment (with a diameter of less than 1 mm) was found
to have a pooled prevalence of 3.15% (95% CI: 2.09–4.40). The nationality, imaging
technique, and side factors did not significantly influence the pooled mean diameter
(p = 0.2226, p = 0.2455, and p = 0.3098, respectively). The pooled mean length of the A1
segment was approximated at 14.24 mm (95% CI: 12.22–16.25). Insufficient data were
available to conduct subgroup analyses for the pooled mean length.

4. Discussion
The present evidence-based meta-analysis examined the variations associated with the

ACA, revealing that the atypical configuration occurs in 6.25% of cases, which is considered
infrequent, and the typical morphology is 93.75% (Figure 2). Numerous variations exist
within the anterior circulation of the brain; however, this review emphasizes the ACA
explicitly. The imaging techniques employed did not influence the identification of ACA
variants, indicating that MRA, CTA, and DSA are all highly reliable. Other, even rarer
variations will be discussed alongside their clinical significance.

The aACA is recognized as the most prevalent morphological variant, yielding a
pooled prevalence estimate of 1.99% (Figure 3). This variant is commonly referred to
by various terms within the current literature, including triplicated ACA, accessory A2
segment, and median artery of the corpus callosum. It is important to highlight that
the aACA included in the current meta-analysis had an origin from the AComA, while
other origins such as the A1–A2 junction were not included due to the limited data. The
imaging modalities employed did not impact the pooled prevalence of this variation;
thus, CTA, MRA, and DSA are deemed suitable for diagnosing this variant. Nonetheless,
the literature presents varying prevalences attributed to the age demographics of the
samples, as older patients with diminished blood flow may possess an aACA that frequently
remains undiagnosed [6]. Unfortunately, conducting a subgroup analysis based on age
categories for this variant was unfeasible. The clinical significance of this variation pertains
to the potential for aneurysm formation at its origin from the AComA [6,7]. In such
instances, the aACA is one of the aneurysm’s draining arteries. The trajectory of this variant
vessel runs parallel and posterior to the pericallosal artery, rendering it susceptible to
intraoperative damage [7]. Notably, Uchino and Tokushige [114] documented the presence
of the aACA in conjunction with bilateral supernumerary MCAs. Furthermore, two aACAs
(quadriplicated ACA) represent an exceedingly rare variant. Altafulla et al. [115] identified
this exceptionally uncommon variation through dissection, where two median arteries of
the corpus callosum originated from the AComA.

The absence of the unilateral A1 segment represents the second most prevalent mor-
phological variant, with a pooled prevalence of 1.78% (Figure 4). A noteworthy detail is
that the frequency of this variation is significantly elevated in imaging studies. This can
be attributed to the difficulty in distinguishing extreme hypoplasia or potential acquired
occlusion on radiological scans, whereas dissection can elucidate even the minutest vessels.
Nevertheless, the imaging modality employed (MRA, CTA, or DSA) did not impact the
identification of this variant. Two critical clinical implications accompany A1 segment
absence: firstly, it induces hemodynamic stress, which frequently leads to the formation
of an AComA aneurysm; and secondly, the contralateral A1 segment is often hyperplas-
tic, thereby allowing for easier thrombus entry into this vessel compared to a typical A1
segment [6]. Furthermore, the integrity of the cerebral arterial circle is compromised when
one A1 segment is absent; consequently, the primary collateral pathway in instances of
stroke is insufficient for establishing collateral circulation [7]. An intriguing case has been
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documented in which the absence of A1 coincided with bilateral posterior cerebral arteries
of fetal origin (originating from the ICA), which entirely disrupted the collateral circulation
of the cerebral arterial circle [2].

 

Figure 2. The typical configuration of the anterior cerebral artery (ACA) based on magnetic resonance
angiography through three-dimensional (3D) reconstruction (A), and in 3D MPR mode coronal (B)
and sagittal (C) slices. ICA—internal carotid artery; MCA—middle cerebral artery; OA—ophthalmic
artery; AComA—anterior communicating artery; L—left; R—right.
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Figure 3. The accessory anterior cerebral artery (aACA) was displayed on magnetic resonance
angiography through three-dimensional (3D) reconstruction (A), 3D MPR axial slices (B), and sagittal
slices (C). ICA—internal carotid artery; MCA—middle cerebral artery; L—left; R—right.
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Figure 4. The absent A1 segment (dotted arrows) of the anterior cerebral artery (ACA) is illustrated
based on magnetic resonance angiography through three-dimensional (3D) reconstruction (A) and
3D MPR coronal slices (B). ICA—internal carotid artery, MCA—middle cerebral artery, L—left, and
R—right.

The unpaired A2 segment is identified as the azACA, a rare variant with a pooled
prevalence of 0.22%. In comparison, the bihemispheric A2 segment is recognized when
the two segments exhibit asymmetry, characterized by one segment being hyperplastic
and supplying the designated territory. In contrast, the hypoplastic contralateral segment
exhibits a pooled prevalence of 0.02%. It is essential to acknowledge these two variants
distinctly. The presence of an azACA is often associated with the occurrence of distal ACA
(dACA) aneurysms [6]. Beyhan et al. [19] categorized the azACA into four distinct types
based on its branching pattern. This variant has been previously linked to various condi-
tions, including holoprosencephaly, corpus callosum agenesis, arteriovenous malformation,
hydranencephaly, and porencephalic cysts [19]. While our assessment did not establish a
significant impact of the imaging technique on the pooled prevalence of the azACA, Beyhan
et al. [19] highlighted that CTA should be regarded as the gold standard for diagnosing
this variant.

The fACA was documented to exhibit a pooled prevalence of 0.02% (Figure 5). Within
the anterior circulation, the AComA represents the most prevalent fenestration site, with a
pooled prevalence of 5% [7]. Nevertheless, the AComA fenestration may be misidentified
due to partial or complete duplication and the fenestration at the A1–A2 junction [116]
(Figure 6). It must also be distinctly differentiated from the duplicate origin of the ACA,
a notably rare variant first described by Uchino et al. [117]. Most studies have reported
fenestration at the A1 segment, while fenestration at the A1–A2 junction or the A2 segment
is significantly rarer. Uchino et al. [6] identified merely two cases of A2 fenestration in their
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MRA study, whereas Minca et al. [118] documented one case in their CTA study. Cerebral
arterial fenestration is frequently associated with fenestrations at the proximal end, which
applies to the ACA. The fenestrated segments exhibit a congenital weakness of the arterial
wall, subsequently altering the hemodynamics [6]. Given that the fenestrated branches
typically align horizontally, they may be superimposed upon conventional angiographic
images; therefore, three-dimensional (3D) imaging data are recommended to identify such
variants [6]. Additionally, rarer case reports have indicated instances where fACA is
associated with another fenestration within the cerebral arterial circle. Our research team
previously described the coexistence of ACA and posterior cerebral artery fenestration [119],
as well as the concomitance of ACA and basilar artery fenestration [120].

The morphometric parameters of the A1 segment may possess significant clinical
implications, particularly concerning the diameter of the vessel. The pooled mean diameter
of the A1 segment is measured at 2.10 mm. When this diameter falls below 1.0 mm,
it is classified as a hypoplastic segment. Such variation results in inadequate collateral
pathways and is associated with a higher prevalence of ipsilateral hemispheric stroke [22].
Furthermore, the same study noted that A1 hypoplasia constitutes a risk factor for small-
artery atherosclerosis [22].

 

Figure 5. The fenestration (Fen) of the A1 segment of the anterior cerebral artery (ACA) is illustrated
in the computed tomography angiography through three-dimensional (3D) reconstruction (A) and
3D MPR sagittal slices (B). L—left; R—right.

The embryological development of the primitive ICA can elucidate several variants
of the ACA. It bifurcates into a cranial and a caudal branch, with the cranial branch rep-
resenting the future ACA. The cranial branch terminates in the olfactory region and is
defined as the primitive olfactory artery (POA). At an embryonic length of 7–12 mm,
the precursor to the adult ACA emerges from the POA. At an embryonic length of
12–14 mm, this precursor constitutes the medial branch of the POA, and several plexi-
form anastomoses exist between the bilateral medial branches, which serve as the precursor
to the adult AComA. At an embryonic stage of 20–24 mm, the primitive ACA assumes an
upper course between the two cerebral hemispheres. In contrast, several primitive branches
have already regressed, and the AComA has not yet reached its definitive form. At this
juncture, the AComA exhibits a well-defined superior branch to the corpus callosum, which
may persist into adulthood as an aACA (median artery of the corpus callosum) [121]. From the
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embryological development of the primitive ICA, one can observe uncommon and rare
types of vessels that persist in the adult cerebral arterial circle. Among them is the
persistence of the POA (PPOA), which courses anteriorly along the olfactory nerve
and subsequently makes a hairpin turn to continue the typical ACA course. Uchino
et al. [122] documented an incidence of 0.14% using MRA, while Kim and Lee [123]
identified the PPOA in 0.26% utilizing CTA, and Vasovic et al. [124] reported an inci-
dence of 0.42% through dissections. Notably, intriguing case reports have also emerged,
with Radoi et al. [125] describing the coexistence of the PPOA and the azygos perical-
losal artery, and Triantafyllou et al. [126] identifying the concomitance of the PPOA,
accessory MCA, and early bifurcated ACA. Both cases were documented utilizing CTA.
Kim and Lee [123] classified the POA into distinct variants based on its termination and
anatomical characteristics: Type 1—the PPOA terminates as a distal ACA; it typically
originates from the internal carotid artery, A1 segment, or A1–A2 junction and follows
an anterior path along the olfactory tract before turning posteriorly. Type 2—the PPOA
ends as the ethmoidal artery, passing through the cribriform plate to supply the nasal
cavity. Also, they observed a unique variant of the PPOA that terminates as a distal
MCA. This variant is thought to represent remnants of the lateral olfactory branches
and was introduced to reflect cases where the PPOA connects to the MCA instead of the
ACA. The clinical significance of this rare variation is that aneurysms may develop at
the tip of the hairpin turn due to the altered hemodynamics and increased stress at this
location [122,125]. Furthermore, its presence should also be anticipated preoperatively
for anterior skull base approaches [126]. Another variation that persists from the fetal
cerebral arterial circle is the infraoptic course of the ACA, located beneath the ON,
which has also been referred to as “carotid-anterior cerebral anastomosis.” Uchino
et al. [127] reported an incidence of 0.086% for this scarce variation. Recent studies
illustrate that “carotid-anterior cerebral anastomosis” is a scarce variant, while the
“infraoptic course” represents a possible morphological and positional variant with a
prevalence of 14.48% [128]. “Carotid-anterior cerebral anastomosis” is frequently asso-
ciated with cerebral aneurysms, particularly at the AComA complex, likely resulting
from the hemodynamic stress induced by the abnormal blood flow [127]. Nevertheless,
the “infraoptic course” significantly alters the neurosurgical triangles of the skull base,
such as the opticocarotid and supracarotid triangles [128]. Therefore, preoperative
awareness of this topographical variant of the ACA is of utmost importance, whether
through MRA [127] or CTA [128].

Recognizing the limitations of this systematic review is essential, particularly
through the lens of meta-analysis. Many included studies demonstrated a notable risk
of bias, and several pooled prevalence estimates showed substantial heterogeneity—a
common issue across anatomical meta-analyses [9]. Moreover, inconsistent or incom-
plete reporting of variant laterality and patient sex limited our ability to perform specific
subgroup analyses.
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Figure 6. The fenestration (Fen) of the A1–A2 junction of the anterior cerebral artery (ACA) is
presented on magnetic resonance angiography through three-dimensional (3D) reconstruction (A)
and 3D MPR coronal (B) and sagittal slices (C). ICA—internal carotid artery; MCA—middle cerebral
artery; L—left; and R—right.

5. Conclusions
This systematic review and meta-analysis provide an updated, evidence-based syn-

thesis of ACA morphological variations and their pooled prevalence. The typical ACA
configuration was observed in 93.75% of cases, with the aACA being the most common
variant at 1.99%. While imaging modality influenced prevalence estimates, CTA, MRA, and
DSA proved reliable for identifying these variants. Importantly, many ACA alterations are
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clinically significant due to their association with aneurysm formation and compromised
collateral flow. Accurate recognition and documentation of these variants are essential for
neuroradiologists and neurosurgeons in diagnostic and preoperative settings.
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