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Abstract
Motivation: CTCF is a conserved protein involved in the establishment and maintenance of topologically associating domains (TADs) and loops. 
Alzheimer’s disease (AD) represents the most common form of dementia, affecting over 50 million elderly individuals. Epigenetic alterations are 
a hallmark of AD, and epigenetic disruptions are able to affect CTCF binding and looping. Understanding the dynamics of CTCF loops behind AD 
may lead to new, undiscovered contributions of CTCF to the etiology of AD. To understand the dynamics behind CTCF loops, we developed a 
CTCF loop predictor using different genomic and epigenomic features, such as CTCF motif information, CTCF protein binding information, and 
different histone marks.
Results: We obtained F-scores of over 0.9 in GM12878 and K562 cell lines. We reported the importance of each feature in classification, and 
compared the results with other loop predictors. After testing the predictor, we predicted loops in control and AD data, reported a score of loop 
disruption and selected the top disrupted loops on AD which were all previously linked with AD in bibliography. Our study contributes to a better 
understanding of the role of CTCF binding and CTCF loops in gene regulation, and highlights new clues about CTCF in the etiology and develop
ment of AD.
Availability and implementation: The method can be found in https://github.com/networkbiolab/jalpy.

1 Introduction
CTCF (CCCTC-binding factor) is a conserved zinc finger 
protein capable of DNA binding (Kim et al. 2015) involved 
on multiple different biological processes. CTCF was first de
scribed as a negative regulator of the myc gene in chicken 
(Klenova et al. 1993), and later it was described as a tran
scriptional regulator involved on many cellular events such as 
insulation (Jia et al. 2020), alternative splicing (Alharbi et al. 
2021), and loop formation (Xi and Beer 2021). CTCF is 
reported as the most important insulator in mammals (Kim 
et al. 2007), and is capable of blocking interactions between 
enhancers and promoters. CTCF is involved on the establish
ment and maintenance of topologically associated domains 
(TADs) (Nanni et al. 2020), which are domains of increased 
self-interaction involved with gene regulation. CTCF is 
enriched at TAD boundaries and blocks interactions from 
elements inside the TAD with elements outside it (Jia 
et al. 2020).

CTCF is involved with tridimensional genome organization 
as it can interact with different proteins forming tridimen
sional functional domains called CTCF loops (Zhang et al. 

2023). The mechanism behind CTCF loop formation is not 
completely described, but the loop extrusion model states 
that cohesin loads into DNA and extrudes the DNA through 
a cohesin ring, moving along the DNA until reaching bound 
CTCF anchors, which can form CTCF homodimers interact
ing with the cohesin ring at the base of the loop (Hansen 
2020). Since CTCF and CTCF loops are involved in main
taining domain boundaries or blocking enhancer activities, 
CTCF binding is critical in regulation of cell gene expression 
(Liu et al. 2023), and alterations to CTCF binding patterns 
lead to transcriptional dysregulation (Fang et al. 2020).

The CTCF loop landscape is considered to be mostly in
variant across similar cell types, and differences on the loop 
landscape can be linked with changes on the normal cell ex
pression program (Grubert et al. 2020). There is evidence 
that epigenetic disruptions are able to affect CTCF binding 
and looping (Monteagudo-S�anchez et al. 2024), and thus, 
diseases which present epigenetic alterations as a feature may 
also feature abnormal CTCF binding and CTCF loop disrup
tion, with Alzheimer’s disease (AD) being an example of pos
sible CTCF disruption (Burton et al. 2002).
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AD is a neurodegenerative disease and represents the most 
common form of dementia, affecting over 50 million elderly 
individuals (“2024 Alzheimer’s disease facts and figures,”
2024). AD is characterized by chronic memory impairment 
and cognitive deficits related, but not limited to, language, 
orientation, spatial and temporal awareness, executive capac
ity, and behavior, a progressive loss of autonomy, dementia, 
and death (Lane et al. 2018). Alzheimer’s is classified into 
early-onset Alzheimer’s disease (EOAD) and late-onset 
Alzheimers disease (LOAD) (Atri 2019). EOAD accounts for 
1%–2% of all AD cases and it usually presents in patients be
tween 30 and 60 years old (Atri 2019). EOAD is inherited in 
an autosomal dominant fashion, with a rapid rate of progres
sion, and the most common biomarkers related with EOAD 
are mutations on the APP, PSEN1, and PSEN2 genes (Atri 
2019). In comparison, LOAD accounts for >97% of all AD 
cases and typically occurs after the age of 65, with many dif
ferent genetic and environmental factors contributing to the 
apparition of the disease. In fact, most AD cases are caused 
by a combination of different risk factors, with age becoming 
one of the most relevant (Zhao and Huai 2023). AD is char
acterized histologically by two hallmarks, the intracellular 
deposition abnormally phosphorylated Tau protein 
(Maccioni et al. 2018), and the extracellular aggregates of 
Amyloid-beta peptide (AB) plaques (Viola and Klein 2015). 
AB oligomers may also activate microgial cell signaling cas
cades that lead to more hyperphosphorilation of Tau protein, 
which also leads to Tau protein aggregates (Viola and Klein 
2015, Maccioni et al. 2018). Tau aggregates get released on 
cell death and also kickstart microglia activation, leading to a 
cyclic pathological cascade which culminates with cell death 
and neurodegeneration (Viola and Klein 2015, Maccioni 
et al. 2018). Age-related epigenetic disruptions may be con
tributing directly to the etiology of AD, since AD and espe
cially LOAD, may be associated with the epigenetic 
alterations related with aging (L�opez-Ot�ın et al. 2023, Yang 
et al. 2023). The CTCF loop landscape in AD is not 
completely understood, and due to different disruptions in 
AD epigenetics, abnormal CTCF binding in AD contributing 
to the etiology of this disease (Patel et al. 2023). Currently, 
the full contribution of CTCF and CTCF loops to AD has not 
been entirely described, and since epigenetic alterations are a 
hallmark of AD, those alterations may be contributing to 
CTCF loop disruption, leading to expression changes on the 
transcriptional program of the cell (Patel et al. 2023).

ChIA-PET is used to detect specific protein-mediated chro
matin loops genome-wide at high resolution (Fullwood et al. 
2009). ChIA-PET requires chromatin cross-linking, proxim
ity ligation of the interacting fragments with linkers, and 
DNA sequencing of the fragments to estimate the frequency 
of chromatin interactions (Fullwood et al. 2009, Tang et al. 
2015). Despite recent technical advances, experimental pro
filing of CTCF-mediated interactions remains difficult and 
costly (Fullwood et al. 2009, Tang et al. 2015), therefore, us
ing computational predictions with integrated available data
sets can be an interesting alternative to interrogate the CTCF- 
mediated interactome on a target of interest.

The dynamics of CTCF loops during the development of 
AD are not completely described, and understanding the dy
namics of CTCF loops behind AD may lead to new, undis
covered contributions of CTCF to the etiology of this disease. 
To understand the dynamics behind CTCF loops, CTCF loop 
formation can be framed as a classification problem where 

the presence or absence of certain features contribute to a 
loop score, such as the conservation of the CTCF binding 
site, the presence of proteins interacting with CTCF, or the 
presence of distinct epigenetic marks. Different machine 
learning approaches have been used in similar biological clas
sification tasks (Greener et al. 2022), and to provide new 
insights about CTCF loop formation in AD we developed a 
new classifier based on XGBoost (Chen and Guestrin 2016), 
tested it on different cell lines, and compared it against state- 
of-the-art CTCF loop predictors (Kai et al. 2018, Xu et al. 
2023). We next predicted loops in control and AD patients, 
using cell samples from dorsolateral prefrontal cortex. We re
port a score of loop disruption and report the top disrupted 
loops on AD. We expect to facilitate in silico prediction of 
CTCF loops, provide new insights about the role of different 
features on CTCF loop formation, and clarify the role of 
CTCF looping in AD.

2 Methods
2.1 Dataset download
We downloaded ChIA-PET data from ENCODE (https:// 
www.encodeproject.org/) for the GM12878 and K562 cell 
lines and aligned it against the hg19 reference genome using 
the ChIA-PET2 (Li et al. 2017) pipeline which streamlines all 
the steps required for ChIA-PET data analysis, including 
trimming, mapping, removal of duplicates, calling of peaks, 
and calling of chromatin loops. ChIA-PET2 output was 
transformed to bedpe format, and loops with <2 PETs and 
FDR >0.05 were removed. We used FIMO (Grant et al. 
2011) with default values and the MA0139.1 CTCF fre
quency matrix to identify CTCF binding sites (CTCFBS) on 
the hg19 reference genome. We also downloaded from the 
same ENCODE repository, CTCF and RAD21 hg19 ChIP- 
seq narrowPeak files to define CTCF loops, and h3k4me1, 
h3k9me3, h3k27me3 and h3k27ac hg19 narrowPeak bed 
files as extra features for the model for the same cell lines. 
For GM12878 and K562, the accession codes are: for CTCF 
ChIP-seq, ENCSR000DZN, ENCSR000EGM, for RAD21 
ChIP-seq, ENCSR000EAC, ENCSR000FAD, for h3k4me1 
ChIP-seq, ENCSR000AKF, ENCSR000AKS, for h3k9me3 
ChIP-seq, ENCSR000AOX, ENCSR000APE, for h3k27me3 
ChIP-seq, ENCSR000AKD, ENCSR000EWB and for 
h3k27ac ChIP-seq, ENCSR000AKC, ENCSR000AKP.

2.2 CTCF loop determination
From the bedpe loop file, for each loop, we generated a win
dow of 1000 pb around the start and the end position 
reported by ChIA-PET2. We removed loops without 
CTCFBS inside the 1000 pb start and end windows. We only 
considered loops in the range between 2 kb and over 2 mb, as 
most of the loops in humans were reported to exist in that 
pair-bases range (Tang et al. 2015). We analyzed the area 
around three different intervals, the first interval was 1000 
pb surrounding the start of the loop, the second interval was 
1000 pb surrounding the end of the loop, and the last interval 
was the area inside the start and the end loop ranges men
tioned (interloop).

2.3 Feature description and loop prediction
We assigned values to the start and end windows based on 
the FIMO scores of the CTCF frequency matrix described 
earlier. If a FIMO predicted CTCFBS was found on either of 
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the start or end intervals, we saved the FIMO predicted 
CTCFBS score as the start-interval motif score or as the end- 
interval motif score, respectively. For the rest of the analyzed 
features, we considered the start-loop interval, the end-loop 
interval, and the interloop interval windows earlier men
tioned. Instead of using the FIMO score, we assigned scores 
based on the presence or absence of an analyzed feature in 
the evaluated window. We included CTCF binding, 
h3k4me1, h3k9me3, h3k27me3, and h3k27ac as analyzed 
features. After aggregating the loop data, we split the loops 
into 2/3 and 1/3, using 2/3 of the loops of GM12878 to train 
the predictor, and tested the predictor with the remaining 1/3 
of the loops. We repeated the whole process using the K562 
cell line. To confirm if our approach was able to generalize 
after being trained, we predicted CTCF loops on the K562 
cell line using the GM12878 cell line, using the whole 
GM12878 loops to as input to train the predictor, and the 
whole K562 loops as a test set.

2.4 High-confidence biological loop determination 
for loop prediction
In humans, the ring-like cohesin complex ring is composed 
by the SMC1-SMC3 dimer, the kleisin RAD21, and the two 
SA1 and SA2 cohesin subunits (Gruber et al. 2003). We clas
sify a loop as positive when convergently oriented CTCF 
motifs were occupied by CTCF in any of the start-loop inter
val, or end-loop interval. We also required colocalization 
with RAD21 in any of the two CTCF loop anchors, as both 
interact for the maintenance of chromatin loop domains 
(Pugacheva et al. 2020). We used these loops as high- 
confidence CTCF loops for training and prediction. 
Importantly, RAD21 was only used to determine which loops 
were positive and which loops were negative, and it was ex
cluded as a training feature in the pipeline. We included a dia
gram of the pipeline as Fig. 5, available as supplementary 
data at Bioinformatics Advances online.

2.5 Loop prediction with simulated CTCF binding
Since CTCF ChIP-seq information is not always available, we 
developed a Random Forests CTCF binding predictor based on 
different genomic and epigenetic features (Villaman et al. 2023), 
with the objective of using known CTCF-related features on a 
known cell line to determine CTCF binding on a different cell 
line without CTCF ChIP-seq data. We evaluated if the predic
tions made with our predictor were also capable of contributing 
to the identification of CTCF loops. We generated CTCF bind
ing scores for the GM12878 cell line and compared the loop 
values with the GM12878 RAD21 loop values, and repeated 
the same method using GM12878 with simulated values as a 
training set, and K562 as a test set. We reported precision- 
recall-area under the curve (PRAUC) and receiver operating 
characteristic-area under the curve (ROCAUC).

2.6 Feature importance in loop prediction
To evaluate feature importance we generated bar plots for 
each feature used in classification in the GM12878 cell line, 
K562 cell line, and predicting across cell lines using 
GM12878 as a training set and K562 as a test set.

2.7 Benchmarking with known approaches
We compared our approach with other published approaches 
(Kai et al. 2018, Xu et al. 2023), training with GM12878 cell 

line and predicting on chr2, 20, 21, and 22 of K562 cell line. 
We reported performance using ROC and PR curves.

2.8 AD dataset download
We downloaded information from the ENCODE RUSH AD 
Project with the objective of having a standard pipeline for 
data analysis and comparison. We downloaded three 
GRCh38-aligned control patients without AD, and one pa
tient with AD and cognitive impairment. We downloaded 
GRCh38 CTCF ChIP-seq data, h3k4me3 ChIP-seq data, 
h3k27me3 ChIP-seq data, h3k27ac ChIP-seq data, and 
DNAse-seq data from dorsolateral prefrontal cortex. We also 
downloaded Hi-C data from the same dataset. We used 
FIMO with default values and the MA0139.1 CTCF fre
quency matrix to identify CTCF binding sites (CTCFBS) on 
the GRCh38 reference genome downloaded from ENCODE, 
and saved both the FIMO score and the P value for poste
rior use.

2.9 AD CTCF binding prediction
From each FIMO predicted AD CTCFBS, we generated ma
trixes of 500 pb around the AD CTCFBS with 25 pb win
dows following the same approach described in earlier steps 
(Villaman et al. 2023). We predicted CTCF binding using a 
Random Forest predictor and compared it with the AD 
CTCF ChIP-seq dataset. We predicted each patient sample by 
itself, splitting the sample dataset randomly and using 2/3 of 
the dataset to train and 1/3 to predict. Then, we trained using 
two patients as a training set and the remaining one as a test 
set. To finish, we used the three patients to predict the AD 
dataset, we used the three patients as a training set and pre
dicted the AD patient as a test set. We reported ROCAUC 
and PRAUC curves for each.

2.10 AD CTCF loop prediction
We used our earlier developed XGBoost CTCF loop predic
tor to generate prediction scores for every loop on the train
ing set. From the downloaded Hi-C data, we divided loops 
into positive and negative. Positive loops had two convergent 
CTCF binding sites on their start and end anchors respec
tively, between 2 kb and 2 mb pb, with predicted CTCF bind
ing confirmed by ChIP-seq on each. Negative loops were 
pairs of CTCF binding sites outside the earlier mentioned cri
teria. We considered an area of 500 pb around the start and 
end anchors, and the area inside the loop. We considered the 
presence of a CTCF binding motif, DNA accessibility, 
h3k4me3, h3k27me3, and h3k27ac as features. We also in
cluded the CTCF binding predictions as features for each 
control and AD sample. We used the three control samples as 
a training set and the AD sample as a test set. We reported 
precision, recall, F-score, ROCAUC, and PRAUC (Taha and 
Hanbury 2015).

2.11 Discordant loop determination
We generated scores for every CTCF loop on the control 
samples under the assumption that CTCF loops in every con
trol sample are relatively constant and related to a normal 
cell state, and disruptions to loops are related to abnormal 
cell states such as AD. We used the three control samples as a 
training set and predicted loop scores on the AD patient, us
ing the same mentioned features for both control and AD 
dataset. After generating loop scores, we designated discor
dant loops following any of the two following conditions: (i) 
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Loops on the control dataset with a high predicted score (1) 
and a low predicted score (<0.0005) on the AD dataset were 
marked as discordant (looping is lost on the AD dataset), and 
we define those loops as “lost.” (ii) Loops on the control 
dataset with a low predicted score 0 and a high predicted 
score (>0.999) on the AD dataset were marked as discordant 
(looping is regained on the AD dataset), and we defined those 
loops as “gained.” We calculated a discordant loop score 
based on the square of the difference between the loop score 
obtained on the control dataset and the AD dataset, as shown 
in the following formula:

To finish, we annotated the loops using the ENCODE 
GRCh38 gtf, assigning each loop to the single gene with the 
longest overlap inside the loop, allowing only a single gene 
for each loop. We ranked genes by the sum of the discordant 
loop score of loops in which they are within and reported the 
top 5 genes with the highest discordant loop score.

3 Results
3.1 Prediction and across-cell prediction
We selected 25 000 and 19 070 positive loop examples for 
GM12878 and K562, defining a positive loop with 2 bound 
CTCF sites on its boundary and RAD21 on any of the three 
reported loop windows (start, end, and intraloop). Negative 
examples were selected by picking two unbound CTCFBS with
out RAD21 on any of the loop windows mentioned. We tested 
GM12878 against itself, and K562 against itself as a first ap
proach, by randomly splitting the dataset using 2/3 to train and 
1/3 to test. To test the performance of the predictor on different 
cell types, we used GM12878 as a training set and K562 as a 
test set. We reported precision, recall and f-score of over 0.83 in 
all of the predicted cell lines, however, prediction across cell 
lines has lower scores than training and prediction with the 
same cell line (Table 1 and Fig. 1A and B, available as supple
mentary data at Bioinformatics Advances online).

3.2 Prediction based on CTCFBS prediction
CTCF ChIP-seq experiments are not always available, and to 
deal with this problem we developed a CTCF binding predictor 
based on different genetic and epigenetic features (Villaman 
et al. 2023). Since CTCF binding is a very important feature on 
the determination of CTCF loops, we wanted to test if the 
results from our predictor were able to be used as features for 
CTCF loop prediction. We trained the predictor using a similar 
protocol to the one mentioned earlier, in this case we employed 
the GM12878 cell line, considering DNA accessibility, 
h3k4me1, h3k9me3, h3k27me3 and h3k27ac histone marks, 
DNA methylation, and FIMO motif score, and used the score 

of the predictor instead of the experimental CTCF ChIP-seq 
data. We used the same approach as the first prediction, we ran
domly split the dataset using 2/3 to train and 1/3 to test. We 
also used the scores for testing across cells, using the predicted 
GM12878 CTCF binding scores as the training set and K562 
CTCF ChIP-seq data as test set. We reported precision, recall 
and f-score of over 0.86, with prediction across cells having a 
lower score than training and prediction with the same cell line 
(Table 2 and Fig. 2A and B, available as supplementary data at 
Bioinformatics Advances online).

3.3 Feature importance determination
To gain insights about the contribution of the different evalu
ated features into the prediction, we extracted and reported 
the feature importance of every feature used in classification. 
The most important feature was the FIMO score at the start 
of the loop, followed by the presence of bound CTCF at the 
end of the loop. This is expected and it accounts for how the 
CTCF loop is being formed; if the start of the loop is con
served or bound, we can expect to find a loop if the end of 
the loop is also conserved or bound. Following these observa
tions, after binding on the end of the loop the next important 
feature is FIMO score on the end, and then CTCF binding in
side the loop, which may consider unaccounted CTCF bind
ing nearby the start or the end of the loop. After those 
features, the following features were the loop distance and 
the histone marks, on any of the reported starts and ends of 
loops (Fig. 3A–C, available as supplementary data at 
Bioinformatics Advances online).

3.4 Comparison with other methods
We compared the performance of this method against two 
other state-of-the-art methods (Kai et al. 2018, Xu et al. 
2023). We picked Lollipop (Kai et al. 2018) due to being one 
of the legacy CTCF loops predictor, and we used 
LoopAnchor (Xu et al. 2023) due to being one of the latest 
published CTCF loops predictor by the time of writing. We 
trained each predictor with the default features for each, 
tested training with GM12878 using default values and fea
tures for each method, and used chromosomes 2, 20, 21, and 
22 of K562 cell line as a test set. We report ROCAUC and 
PRAUC of each predictor, finding that our predictor has a 
slightly lower ROCAUC than the other predictors, and a bet
ter performance in terms of PRAUC than Lollipop, but 
slightly worse than LoopAnchor (Fig. 4A and B, available as 
supplementary data at Bioinformatics Advances online).

3.5 AD CTCF binding prediction
We used FIMO to predict CTCF binding sites on the 
GRCh38 reference genome, and used the FIMO scores with 
four other different features (CTCF binding motif, DNA ac
cessibility, h3k4me3, h3k27me3, and h3k27ac) to train a 
Random Forest predictor for CTCF binding on three differ
ent control AD patients, using CTCF ChIP-seq information 
as gold standard; 52 435 CTCF binding sites were predicted 
by FIMO. We first analyzed each patient by itself, splitting 
the whole dataset into 2/3 used for training and 1/3 used for 
testing and reported precision, recall, and F-score, and plot
ted ROCAUC and PRAUC (Table 1, Fig. 1A and B). After 
predicting each patient by itself, we used two patients to pre
dict the third one, to increase the number of available exam
ples and to confirm if the predictor was able to generalize. 
We reported precision, recall, and F-score, and plotted 

Table 1. Precision, recall, and F-score after predicting CTCF binding.a

Sample Precision Recall F-score

Pred P1 Sample 1 0.92 0.62 0.74
Pred P2 Sample 2 0.93 0.58 0.72
Pred P3 Sample 3 0.91 0.54 0.67
Pred P1 Cross 1 0.93 0.58 0.71
Pred P2 Cross 2 0.91 0.53 0.67
Pred P3 Cross 3 0.93 0.62 0.74
AD Predict 0.75 0.59 0.66

a Sample 1, 2, and 3 uses information from said sample, splits randomly 
the CTCFBS on the sample using 2/3rds as a training set and 1/3rd as a test 
set. Cross 1, 2, and 3 represents using two samples as a training set and 
predicting on the remaining one as a test set. AD Predict uses the three 
control patients to predict a patient with AD and cognitive impairment.
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Figure 1. CTCF binding prediction on patients without cognitive impairment, using 2/3rds as a training set and 1/3rd as a testing set, using each patient to 
predict itself. (A) ROC-AUC. (B) PR-AUC.

Table 2. Top five most disrupted loops for gained and lost loop instances.a

chr startloop endloop Predicted score Discordant score Gene name

chr10 124025000 124095000 8.93E-05 0.999821 CHST15
chr17 59440000 59570000 0.000123 0.999752 DHX40
chr11 70467000 70756000 0.000143 0.999713 SHANK2
chr12 40970000 41070000 0.000174 0.999651 CNTN1
chr2 74915000 75405000 0.000182 0.999635 POLE4
chr7 71750000 72640000 0.999581 0.999163 CALN1
chr7 71750000 72640000 0.999581 0.999163 TYW1B
chr6 33410000 33580000 0.999782 0.999564 SYNGAP1
chr6 33410000 33580000 0.999782 0.999564 GGNBP1
chr8 130290000 130680000 0.999925 0.999851 ASAP1

a Top five are lost loops, Bottom five are gained loops.

Gaining insights into AD by predicting chromatin spatial organization                                                                                                                         5 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/5/1/vbaf268/8301184 by guest on 24 N
ovem

ber 2025



ROCAUC and PRAUC (Table 1, Fig. 2A and B). For the AD 
dataset we trained the model, used the three patients datasets 
and used it to predict the patient with cognitive impairment 
and AD, and reported performance afterwards (Table 1, 
Fig. 2C and D).

3.6 CTCF loop prediction
For CTCF loop prediction we downloaded Hi-C loop data 
from ENCODE and assigned positive and negative loops con
sidering positive loops as loops with convergent, CTCF- 
bound CTCF binding sites with a distance between 2 kb and 
2mb, considering earlier mentioned features. We trained a 
XGBoost loop predictor and generated predictions for each 
loop using controls as a training set and AD patient as a test 
set. To finish, we generated scores for loops on the AD sam
ple and saved them for posterior use.

3.7 Discordant loop determination
We compared the obtained loop scores between the control 
sample and the AD sample, and divided the scores between 
gained loops (loops with a low score on the control sample 
and high score on the AD sample) and lost loops (loops with 
a high score on the control sample and low score on the AD 
sample), and ranked them based on their discordant loop 
score (Table 2). The top predicted lost loops involved the 
genes CHST15, DHX40, SHANK2, CNTN1, and POLE4, 
and the top predicted gained loops contained SYNGAP1, 
GGNBP1, TYW1B, CALN1, and ASAP1. According to bibli
ography, four of the five top lost loops have been linked to 

AD with supported evidence, suggesting a possible link be
tween loop disruption and AD (Table 3).

4 Discussion
CTCF is related with multiple functions inside the cell and 
determining the full extension of its phenotypic and mecha
nistic roles remains to be done. Over 60% of the CTCF bind
ing sites are conserved across different cell lines (Chen et al. 
2012), and Rao et al. (2014) reported from 55% to a 75% of 
shared conserved peaks in HiC experiments across them. 
Under this context, FIMO score can be considered as a proxy 
of CTCF binding site conservation, and FIMO score is consis
tently one of the most important features in classification 
reported by our predictor. Both FIMO score and CTCF bind
ing were reported as the most important features in CTCF 
loop classification, and due to the conservation of CTCF 
binding sites between different tissues and cell lines, the de
tection of conserved CTCF loops is possible using only the 
CTCF motif scores with our approach. Other methods to pre
dict CTCF loops exist, however, they differ in both methods 
and performance (Kai et al. 2018, Zhang et al. 2018). One 
advantage of this method is prediction across cell lines, how
ever, a performance reduction in our method is to be 
expected due to differences between each particular cell 
CTCF landscape. Nevertheless, other approaches have fo
cused on the importance of the motif sequence and have pre
dicted loops only training with the CTCF binding sequences 
(Zhang et al. 2018) and our results confirm the importance 
of these observations.

Figure 2. CTCF binding prediction on patients without cognitive impairment and patients with AD and cognitive impairment. (A) ROC-AUC predicting 
CTCF binding on three controls using two controls as a training set and the remaining one as a test set. (B) PR-AUC of the same controls. (C) ROC-AUC, 
using three control samples to predict the AD sample. (D) PR-AUC using three control samples to predict the AD sample.
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Cell-specific CTCF loops with lower conservation scores 
may require different considerations than conserved CTCF 
loops, for example, less conserved loops may determine spe
cific cell processes related directly with lineage specification 
(Liu et al. 2023), and training on different cell lines may not 
be able to provide proper examples for training, interfering 
with the identification of loops across cell lines. Since CTCF 
cooperates with lineage-specific pioneer transcription factors 
(TFs), such as MyoD, FOXA, and PU.110, including expres
sion data of these factors may improve cell-specific loop reso
lution. We considered only the presence of features inside the 
loop, or around the start or end of the loop, since we deemed 
the presence of a feature to be more relevant than its exact lo
cation on the sequence. However, we can increase the resolu
tion by creating bins inside the analyzed regions of the CTCF 
loop to improve performance, especially if features related to 
opposite biological phenomena occupy the same region, such 
as DNA methylation and DNA expression, or h3k27ac 
and h3k27me3.

We reported relatively good performance using in silico 
predicted CTCF binding scores using two different cell lines. 
The two cell lines were selected according to the assays avail
able at the time of the study. K562 is a widely used human 
leukemia cell line with an extensive genomic and epigenomic 
characterization (Zhou et al. 2019), while GM12878 is an 
EBV-transformed human B-lymphoblastoid cell line (Lin 
et al. 2022). It is well known that bypassing cellular senes
cence, either due to the tumoral cellular origin or via the im
mortalization process of primary cells, required additional 
mutation and/or epigenetic alterations. These mechanisms 
contribute to both inter- and intra-cell line heterogeneity and 
may have an influence on results outcomes (Zhu et al. 2023). 
Nonetheless, our work proposes a useful model to predict 
CTCF loops, which will be further strengthened as more hu
man cell lines are characterized by multiomics profil
ing assays.

We considered overfitting as a possible issue, as we have 
evaluated the use of GM12878 multiple times during the de
velopment of this work. However, in earlier work by the 
same authors (Villaman et al. 2023), and other methods of 
TF binding prediction such as msCentipede (Raj et al. 2015) 
and Catchitt (Keilwagen et al. 2019) also report improved 
results on GM12878 when compared to other cell lines from 
the ENCODE dataset. We believe that the results are not re
lated to overfitting, and they are related with better quality of 
the hg19 GM12878 dataset when compared to the rest of the 
ENCODE datasets.

Testing across multiple cell lines would improve the num
ber of available examples, improving performance on shared 

loops, however, an impaired performance could be expected 
on cell-specific loops. Including additional features such as 
methylation, gene expression, or DNA accessibility would 
contribute to identify cell-specific loops if the conservation of 
their CTCF binding sites is low, nonetheless loops with 
weaker CTCF binding would most likely be exclusive to the 
cell and related with its own transcriptional landscape, mak
ing possible that the inclusion of extra features does not im
prove the performance of the predictor. Nevertheless, the 
relationship between performance improvement versus per
formance impairment remains to be studied. We were able to 
predict with over 0.9 F-score on the analyzed cell lines, with 
the worst performance obtaining when predicting training 
across cell lines, highlighting the idea that conserved loops 
share similar features while cell-specific loops present singu
lar features. We plan to expand the array of both features 
and cell lines included on CTCF loop prediction to improve 
prediction performance, and at the same time to provide new 
insights about the role of CTCF loops across the myriad of 
existing human cell types.

Importantly, our results suggest the existence of two differ
ent kind of CTCF binding sites, conserved ones shared across 
cells, and cell-exclusive CTCF binding sites. In fact, there is 
evidence sustaining that conserved CTCF sites have a struc
tural function while non-conserved ones have a regulatory 
function (Plasschaert et al. 2014, Marina-Z�arate et al. 2023). 
Since there is a direct relation between CTCF binding site 
conservation and loop presence (Zhang et al. 2018), loops 
can be divided between shared loops with high CTCF binding 
site conservation between cell lines, and less conserved cell- 
specific loops. The samples analyzed from dorsolateral pre
frontal cortex were sequenced from a combination of many 
different cell types on different states, in both the controls 
and the AD and cognitive impairment samples, and it is plau
sible that our predictor was capable of resolving shared 
CTCF binding sites but not cell-exclusive CTCF binding sites. 
This also supports the idea that there are also two kinds of 
CTCF loops, ones formed between conserved CTCF binding 
sites and cell-exclusive loops formed between less conserved 
CTCF binding sites. This idea is confirmed by many different 
authors (Martin et al. 2011, Wang et al. 2021, Xu et al. 
2023). If the predictor is not able to properly identify CTCF 
binding, it would also not be able to properly resolve the cell- 
exclusive CTCF loops since they are dependent on the CTCF 
binding score feature. Another factor is the idea that changes 
in control patients and AD samples are related with the cell 
composition and cell death inherent with AD (Johnson et al. 
2020), however, since the CTCF loop landscape is mostly in
variant, it is possible to suggest that the changes in CTCF 

Table 3. Genes in disrupted loops and their link with AD.

Gene AD link Citation DOI

CHST15 Neuropathological AD-related gene Silva et al. (2012) 10.1371/journal.pone.0048751
DHX40 Age-dependent differentially methylated Pellegrini et al. (2021) 10.3389/fnagi.2021.639428
SHANK2 Decreased in AD Patel et al. (2023) 10.1016/j.nbd.2023.106192
CNTN1 Aggravates neuroinflammation in AD Li et al. (2023) 10.14336/AD.2023.0228
POLE4 Reduced CTCF binding in AD Patel et al. (2023) 10.1016/j.nbd.2023.106192
CALN1 Differentially expressed in AD Li and De Muynck (2021) 10.1016/j.bbih.2021.100227
TYW1B Detected in AD neural networks Ghose et al. (2024) 10.1093/bib/bbae704
SYNGAP1 Risk factor in GWAS AD Mez et al. (2017) 10.1016/j.jalz.2016.09.002
GGNBP1 Gametogenetin-binding protein 1, unknown  

function, no known AD link.
– –

ASAP1 Genetic modulator for Tau pathologies Xu et al. (2024) 10.1007/s00401-024-02703-3
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loops, especially those with a high CTCF binding score, ac
count directly for AD-related abnormalities and are shared 
across the analyzed tissue cell types.

Another issue to consider is the fact that changes in CTCF 
binding and looping may not affect gene expression directly, 
however, loss of CTCF binding may prevent the formation of 
CTCF loops in response to cellular events, affecting the abil
ity of the cell to maintain homeostasis (Kaushal et al. 2021, 
Xu et al. 2021), this suggesting that changes to CTCF in AD 
may be a cumulative trait during the development of this dis
ease. A proper progression of CTCF loop disruption in AD 
cannot be established due to the lack of available data, but 
we expect that as more AD datasets become available, more 
information would be available about AD and CTCF loop 
during the development of the disease.

There are reports of lower CTCF binding in AD samples, sug
gesting altered methylation as a possible mechanism of CTCF 
binding disruption (Patel et al. 2023). Conserved CTCF binding 
sites are shared across cell lines, and impaired CTCF binding on 
conserved CTCF sites may be a hallmark of this disease. 
However, if the loss of CTCF binding is random or gene- 
specific remains to be determined. Abnormal DNA methylation 
is a hallmark linking CTCF and different kinds of cancer 
(Damaschke et al. 2020), this connection can be explained by 
the abrogation of CTCF binding by methylation and the devel
opment of cancer-specific expression landscapes leading to 
cancer-specific hypermethylation (Damaschke et al. 2020), but 
if the loss of CTCF in AD leads to AD-specific methylation and 
gene expression is not yet verified.

Importantly, we found discordant loops and divided them 
in two groups, loops gained on AD and loops lost in AD. We 
suggest that loops gained in AD are representative of the dif
ferent cell composition during the development of AD while 
comparing AD and control samples, and loops lost on AD 
are directly related with impaired CTCF binding shared 
across cells in the dorsolateral prefrontal cortex. CTCF binds 
to unmethylated DNA sequences (Holwerda and De Laat 
2013, Prickett et al. 2013, Maurano et al. 2015) and it can 
bind to DNA damage sites and activate a cascade reaction 
resulting in DNMT1 inactivation and DNA demethylation 
(Zampieri et al. 2012). Moreover, CTCF is also related to 
patterns of histone modifications and is especially required to 
implement both H3K27ac and H3K27me3 (Wang et al. 
2021). While their defects may rewire genome-wide chroma
tin accessibility and have serious implications on the normal 
cell expression program (Xu et al. 2021). Thus suggesting 
that the decline in CTCF binding with age may be an initial 
mechanism in AD pathogenesis (Wang et al. 2020, Hou et al. 
2021). One of our main issues was data availability, as the 
Hi-C experiments required to confirm CTCF loops are not 
readily available for the conditions we wanted to evaluate, 
and we have not evaluated our approach in other datasets 
again due to the earlier lack of data mentioned. While it may 
not be possible to extend the results to the whole spectrum of 
AD etiology due to an inherent lack of robustness, we can 
also acknowledge the fact that the genes involved in the loops 
predicted as lost have also been experimentally described as 
relevant in AD, such as SHANK2 (Patel et al. 2023) and 
POLE4 (Ferrer et al. 2021, Patel et al. 2023). Patel and col
laborators also analyzed the RUSH ENCODE dataset, how
ever, while there is an overlap in controls, there is no overlap 
in AD cases, and while our results could be describing an iso
lated case, we believe that the similarity in results highlights 

and underlying mechanism and not a singular phenomenon. 
Nevertheless, caution should be advised while interpreting 
these results, and we expect to expand on them on fur
ther analyses.

We report CTCF loop loss on genes directly related with 
AD on AD sample dorsolateral prefrontal cortex, however, 
we lack enough information to suggest the mechanism behind 
it. There is also evidence of interactions between APOE and 
CTCF and it is possible for CTCF to make protein complexes 
directly with AB peptides or Tau hindering its ability to bind 
DNA (Del Moral-Morales et al. 2023), however, more stud
ies on the topic are required to confirm the existence of either 
a pattern or a mechanism confirming the role of CTCF and 
CTCF looping in AD. Finally, our evidence shows concrete 
links between epigenetics, CTCF, and the etiology of LOAD, 
and the exploration of those links may provide new clues 
about development of LOAD and possible therapeutic targets 
to this disease in the future.

5 Conclusion
We developed a CTCF loop predictor that can use CTCF 
binding predictions with similar performance to other state- 
of-the-art predictors and used it to gain new insights on AD. 
We identified that CTCF binding site conservation and CTCF 
binding are the most important features in loop classification, 
consistent with observations on different cell lines. We identi
fied that conserved CTCF binding sites and conserved CTCF 
binding are related with CTCF loops, and CTCF loops with 
weaker conservation scores and CTCF binding may be re
lated with cell-specific CTCF binding, requiring the inclusion 
of more features to be properly resolved. We predicted CTCF 
binding and CTCF loops in three control samples and an AD 
sample using genetic and epigenetic features. We reported 
loop disruption when comparing the control and the AD 
sample and found that the top disrupted loops were genes 
that were reported as AD-related in bibliography. We expect 
to expand on both the amount of analyzed cell lines and fea
tures included in the nearby future to provide new knowledge 
about CTCF function across different cell lines. Importantly, 
with the currently available information it is not possible to 
elucidate a clear biological mechanism besides correlation, 
and more studies are required to confirm the extent of disrup
tion of CTCF binding and CTCF loops in AD. Nevertheless, 
our observations support the fact that there is a link between 
CTCF and the etiology of AD.
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