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Abstract

Motivation: CTCF is a conserved protein involved in the establishment and maintenance of topologically associating domains (TADs) and loops.
Alzheimer's disease (AD) represents the most common form of dementia, affecting over 50 million elderly individuals. Epigenetic alterations are
a hallmark of AD, and epigenetic disruptions are able to affect CTCF binding and looping. Understanding the dynamics of CTCF loops behind AD
may lead to new, undiscovered contributions of CTCF to the etiology of AD. To understand the dynamics behind CTCF loops, we developed a
CTCF loop predictor using different genomic and epigenomic features, such as CTCF motif information, CTCF protein binding information, and
different histone marks.

Results: \We obtained F-scores of over 0.9 in GM12878 and K562 cell lines. We reported the importance of each feature in classification, and
compared the results with other loop predictors. After testing the predictor, we predicted loops in control and AD data, reported a score of loop
disruption and selected the top disrupted loops on AD which were all previously linked with AD in bibliography. Our study contributes to a better
understanding of the role of CTCF binding and CTCF loops in gene regulation, and highlights new clues about CTCF in the etiology and develop-

ment of AD.

Availability and implementation: The method can be found in https://github.com/networkbiolab/jalpy.

1 Introduction

CTCF (CCCTC-binding factor) is a conserved zinc finger
protein capable of DNA binding (Kim et al. 2015) involved
on multiple different biological processes. CTCF was first de-
scribed as a negative regulator of the myc gene in chicken
(Klenova et al. 1993), and later it was described as a tran-
scriptional regulator involved on many cellular events such as
insulation (Jia et al. 2020), alternative splicing (Alharbi ez al.
2021), and loop formation (Xi and Beer 2021). CTCF is
reported as the most important insulator in mammals (Kim
et al. 2007), and is capable of blocking interactions between
enhancers and promoters. CTCF is involved on the establish-
ment and maintenance of topologically associated domains
(TADs) (Nanni et al. 2020), which are domains of increased
self-interaction involved with gene regulation. CTCF is
enriched at TAD boundaries and blocks interactions from
elements inside the TAD with elements outside it (Jia
et al. 2020).

CTCF is involved with tridimensional genome organization
as it can interact with different proteins forming tridimen-
sional functional domains called CTCF loops (Zhang et al.

2023). The mechanism behind CTCF loop formation is not
completely described, but the loop extrusion model states
that cohesin loads into DNA and extrudes the DNA through
a cohesin ring, moving along the DNA until reaching bound
CTCF anchors, which can form CTCF homodimers interact-
ing with the cohesin ring at the base of the loop (Hansen
2020). Since CTCF and CTCF loops are involved in main-
taining domain boundaries or blocking enhancer activities,
CTCF binding is critical in regulation of cell gene expression
(Liu et al. 2023), and alterations to CTCF binding patterns
lead to transcriptional dysregulation (Fang et al. 2020).

The CTCF loop landscape is considered to be mostly in-
variant across similar cell types, and differences on the loop
landscape can be linked with changes on the normal cell ex-
pression program (Grubert et al. 2020). There is evidence
that epigenetic disruptions are able to affect CTCF binding
and looping (Monteagudo-Sanchez et al. 2024), and thus,
diseases which present epigenetic alterations as a feature may
also feature abnormal CTCF binding and CTCF loop disrup-
tion, with Alzheimer’s disease (AD) being an example of pos-
sible CTCF disruption (Burton ez al. 2002).
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AD is a neurodegenerative disease and represents the most
common form of dementia, affecting over 50 million elderly
individuals (“2024 Alzheimer’s disease facts and figures,”
2024). AD is characterized by chronic memory impairment
and cognitive deficits related, but not limited to, language,
orientation, spatial and temporal awareness, executive capac-
ity, and behavior, a progressive loss of autonomy, dementia,
and death (Lane et al. 2018). Alzheimer’s is classified into
early-onset Alzheimer’s disease (EOAD) and late-onset
Alzheimers disease (LOAD) (Atri 2019). EOAD accounts for
1%-2% of all AD cases and it usually presents in patients be-
tween 30 and 60 years old (Atri 2019). EOAD is inherited in
an autosomal dominant fashion, with a rapid rate of progres-
sion, and the most common biomarkers related with EOAD
are mutations on the APP, PSEN1, and PSEN2 genes (Atri
2019). In comparison, LOAD accounts for >97% of all AD
cases and typically occurs after the age of 65, with many dif-
ferent genetic and environmental factors contributing to the
apparition of the disease. In fact, most AD cases are caused
by a combination of different risk factors, with age becoming
one of the most relevant (Zhao and Huai 2023). AD is char-
acterized histologically by two hallmarks, the intracellular
deposition  abnormally  phosphorylated Tau protein
(Maccioni et al. 2018), and the extracellular aggregates of
Amyloid-beta peptide (AB) plaques (Viola and Klein 2015).
AB oligomers may also activate microgial cell signaling cas-
cades that lead to more hyperphosphorilation of Tau protein,
which also leads to Tau protein aggregates (Viola and Klein
2015, Maccioni et al. 2018). Tau aggregates get released on
cell death and also kickstart microglia activation, leading to a
cyclic pathological cascade which culminates with cell death
and neurodegeneration (Viola and Klein 2015, Maccioni
et al. 2018). Age-related epigenetic disruptions may be con-
tributing directly to the etiology of AD, since AD and espe-
cially LOAD, may be associated with the epigenetic
alterations related with aging (Lopez-Otin et al. 2023, Yang
et al. 2023). The CTCF loop landscape in AD is not
completely understood, and due to different disruptions in
AD epigenetics, abnormal CTCF binding in AD contributing
to the etiology of this disease (Patel e al. 2023). Currently,
the full contribution of CTCF and CTCF loops to AD has not
been entirely described, and since epigenetic alterations are a
hallmark of AD, those alterations may be contributing to
CTCEF loop disruption, leading to expression changes on the
transcriptional program of the cell (Patel ez al. 2023).

ChIA-PET is used to detect specific protein-mediated chro-
matin loops genome-wide at high resolution (Fullwood et al.
2009). ChIA-PET requires chromatin cross-linking, proxim-
ity ligation of the interacting fragments with linkers, and
DNA sequencing of the fragments to estimate the frequency
of chromatin interactions (Fullwood et al. 2009, Tang et al.
2015). Despite recent technical advances, experimental pro-
filing of CTCF-mediated interactions remains difficult and
costly (Fullwood et al. 2009, Tang et al. 2015), therefore, us-
ing computational predictions with integrated available data-
sets can be an interesting alternative to interrogate the CTCF-
mediated interactome on a target of interest.

The dynamics of CTCF loops during the development of
AD are not completely described, and understanding the dy-
namics of CTCF loops behind AD may lead to new, undis-
covered contributions of CTCF to the etiology of this disease.
To understand the dynamics behind CTCF loops, CTCF loop
formation can be framed as a classification problem where
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the presence or absence of certain features contribute to a
loop score, such as the conservation of the CTCF binding
site, the presence of proteins interacting with CTCF, or the
presence of distinct epigenetic marks. Different machine
learning approaches have been used in similar biological clas-
sification tasks (Greener et al. 2022), and to provide new
insights about CTCF loop formation in AD we developed a
new classifier based on XGBoost (Chen and Guestrin 2016),
tested it on different cell lines, and compared it against state-
of-the-art CTCF loop predictors (Kai et al. 2018, Xu et al.
2023). We next predicted loops in control and AD patients,
using cell samples from dorsolateral prefrontal cortex. We re-
port a score of loop disruption and report the top disrupted
loops on AD. We expect to facilitate in silico prediction of
CTCEF loops, provide new insights about the role of different
features on CTCF loop formation, and clarify the role of
CTCEF looping in AD.

2 Methods
2.1 Dataset download

We downloaded ChIA-PET data from ENCODE (https://
www.encodeproject.org/) for the GM12878 and K562 cell
lines and aligned it against the hg19 reference genome using
the ChIA-PET2 (Li et al. 2017) pipeline which streamlines all
the steps required for ChIA-PET data analysis, including
trimming, mapping, removal of duplicates, calling of peaks,
and calling of chromatin loops. ChIA-PET2 output was
transformed to bedpe format, and loops with <2 PETs and
FDR >0.05 were removed. We used FIMO (Grant et al.
2011) with default values and the MA0139.1 CTCF fre-
quency matrix to identify CTCF binding sites (CTCFBS) on
the hgl9 reference genome. We also downloaded from the
same ENCODE repository, CTCF and RAD21 hg19 ChIP-
seq narrowPeak files to define CTCF loops, and h3k4mel,
h3k9me3, h3k27me3 and h3k27ac hgl9 narrowPeak bed
files as extra features for the model for the same cell lines.
For GM12878 and K562, the accession codes are: for CTCF
ChIP-seq, ENCSRO00DZN, ENCSRO00EGM, for RAD21
ChIP-seq, ENCSRO00EAC, ENCSRO00FAD, for h3k4mel
ChIP-seq, ENCSRO00AKF, ENCSR0O00AKS, for h3k9me3
ChIP-seq, ENCSRO00AOX, ENCSRO00APE, for h3k27me3
ChIP-seq, ENCSRO00AKD, ENCSROO0EWB and for
h3k27ac ChIP-seq, ENCSROO0AKC, ENCSRO00AKP.

2.2 CTCF loop determination

From the bedpe loop file, for each loop, we generated a win-
dow of 1000 pb around the start and the end position
reported by ChIA-PET2. We removed loops without
CTCFBS inside the 1000 pb start and end windows. We only
considered loops in the range between 2 kb and over 2 mb, as
most of the loops in humans were reported to exist in that
pair-bases range (Tang et al. 2015). We analyzed the area
around three different intervals, the first interval was 1000
pb surrounding the start of the loop, the second interval was
1000 pb surrounding the end of the loop, and the last interval
was the area inside the start and the end loop ranges men-
tioned (interloop).

2.3 Feature description and loop prediction

We assigned values to the start and end windows based on
the FIMO scores of the CTCF frequency matrix described
earlier. If a FIMO predicted CTCFBS was found on either of
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the start or end intervals, we saved the FIMO predicted
CTCEFBS score as the start-interval motif score or as the end-
interval motif score, respectively. For the rest of the analyzed
features, we considered the start-loop interval, the end-loop
interval, and the interloop interval windows earlier men-
tioned. Instead of using the FIMO score, we assigned scores
based on the presence or absence of an analyzed feature in
the evaluated window. We included CTCF binding,
h3k4mel, h3k9me3, h3k27me3, and h3k27ac as analyzed
features. After aggregating the loop data, we split the loops
into 2/3 and 1/3, using 2/3 of the loops of GM12878 to train
the predictor, and tested the predictor with the remaining 1/3
of the loops. We repeated the whole process using the K562
cell line. To confirm if our approach was able to generalize
after being trained, we predicted CTCF loops on the K562
cell line using the GM12878 cell line, using the whole
GM12878 loops to as input to train the predictor, and the
whole K562 loops as a test set.

2.4 High-confidence biological loop determination
for loop prediction

In humans, the ring-like cohesin complex ring is composed
by the SMC1-SMC3 dimer, the kleisin RAD21, and the two
SA1 and SA2 cohesin subunits (Gruber et al. 2003). We clas-
sify a loop as positive when convergently oriented CTCF
motifs were occupied by CTCF in any of the start-loop inter-
val, or end-loop interval. We also required colocalization
with RAD21 in any of the two CTCF loop anchors, as both
interact for the maintenance of chromatin loop domains
(Pugacheva er al. 2020). We used these loops as high-
confidence CTCF loops for training and prediction.
Importantly, RAD21 was only used to determine which loops
were positive and which loops were negative, and it was ex-
cluded as a training feature in the pipeline. We included a dia-
gram of the pipeline as Fig. 5, available as supplementary
data at Bioinformatics Advances online.

2.5 Loop prediction with simulated CTCF binding

Since CTCF ChIP-seq information is not always available, we
developed a Random Forests CTCF binding predictor based on
different genomic and epigenetic features (Villaman et al. 2023),
with the objective of using known CTCF-related features on a
known cell line to determine CTCF binding on a different cell
line without CTCF ChIP-seq data. We evaluated if the predic-
tions made with our predictor were also capable of contributing
to the identification of CTCF loops. We generated CTCF bind-
ing scores for the GM12878 cell line and compared the loop
values with the GM12878 RAD21 loop values, and repeated
the same method using GM12878 with simulated values as a
training set, and K562 as a test set. We reported precision-
recall-area under the curve (PRAUC) and receiver operating
characteristic-area under the curve (ROCAUC).

2.6 Feature importance in loop prediction

To evaluate feature importance we generated bar plots for
each feature used in classification in the GM12878 cell line,
K562 cell line, and predicting across cell lines using
GM12878 as a training set and K562 as a test set.

2.7 Benchmarking with known approaches

We compared our approach with other published approaches
(Kai et al. 2018, Xu et al. 2023), training with GM 12878 cell

line and predicting on chr2, 20, 21, and 22 of K562 cell line.
We reported performance using ROC and PR curves.

2.8 AD dataset download

We downloaded information from the ENCODE RUSH AD
Project with the objective of having a standard pipeline for
data analysis and comparison. We downloaded three
GRCh38-aligned control patients without AD, and one pa-
tient with AD and cognitive impairment. We downloaded
GRCh38 CTCF ChIP-seq data, h3k4me3 ChIP-seq data,
h3k27me3 ChIP-seq data, h3k27ac ChIP-seq data, and
DNAse-seq data from dorsolateral prefrontal cortex. We also
downloaded Hi-C data from the same dataset. We used
FIMO with default values and the MA0139.1 CTCF fre-
quency matrix to identify CTCF binding sites (CTCFBS) on
the GRCh38 reference genome downloaded from ENCODE,
and saved both the FIMO score and the P value for poste-
rior use.

2.9 AD CTCF binding prediction

From each FIMO predicted AD CTCFBS, we generated ma-
trixes of 500 pb around the AD CTCFBS with 25 pb win-
dows following the same approach described in earlier steps
(Villaman et al. 2023). We predicted CTCF binding using a
Random Forest predictor and compared it with the AD
CTCF ChIP-seq dataset. We predicted each patient sample by
itself, splitting the sample dataset randomly and using 2/3 of
the dataset to train and 1/3 to predict. Then, we trained using
two patients as a training set and the remaining one as a test
set. To finish, we used the three patients to predict the AD
dataset, we used the three patients as a training set and pre-
dicted the AD patient as a test set. We reported ROCAUC
and PRAUC curves for each.

2.10 AD CTCF loop prediction

We used our earlier developed XGBoost CTCF loop predic-
tor to generate prediction scores for every loop on the train-
ing set. From the downloaded Hi-C data, we divided loops
into positive and negative. Positive loops had two convergent
CTCF binding sites on their start and end anchors respec-
tively, between 2 kb and 2 mb pb, with predicted CTCF bind-
ing confirmed by ChIP-seq on each. Negative loops were
pairs of CTCF binding sites outside the earlier mentioned cri-
teria. We considered an area of 500 pb around the start and
end anchors, and the area inside the loop. We considered the
presence of a CTCF binding motif, DNA accessibility,
h3k4me3, h3k27me3, and h3k27ac as features. We also in-
cluded the CTCF binding predictions as features for each
control and AD sample. We used the three control samples as
a training set and the AD sample as a test set. We reported
precision, recall, F-score, ROCAUC, and PRAUC (Taha and
Hanbury 2015).

2.11 Discordant loop determination

We generated scores for every CTCF loop on the control
samples under the assumption that CTCF loops in every con-
trol sample are relatively constant and related to a normal
cell state, and disruptions to loops are related to abnormal
cell states such as AD. We used the three control samples as a
training set and predicted loop scores on the AD patient, us-
ing the same mentioned features for both control and AD
dataset. After generating loop scores, we designated discor-
dant loops following any of the two following conditions: (i)
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Loops on the control dataset with a high predicted score (1)
and a low predicted score (<0.0005) on the AD dataset were
marked as discordant (looping is lost on the AD dataset), and
we define those loops as “lost.” (ii) Loops on the control
dataset with a low predicted score 0 and a high predicted
score (>0.999) on the AD dataset were marked as discordant
(looping is regained on the AD dataset), and we defined those
loops as “gained.” We calculated a discordant loop score
based on the square of the difference between the loop score
obtained on the control dataset and the AD dataset, as shown
in the following formula:

To finish, we annotated the loops using the ENCODE
GRCh38 gtf, assigning each loop to the single gene with the
longest overlap inside the loop, allowing only a single gene
for each loop. We ranked genes by the sum of the discordant
loop score of loops in which they are within and reported the
top 5 genes with the highest discordant loop score.

3 Results
3.1 Prediction and across-cell prediction

We selected 25 000 and 19 070 positive loop examples for
GM12878 and K562, defining a positive loop with 2 bound
CTCF sites on its boundary and RAD21 on any of the three
reported loop windows (start, end, and intraloop). Negative
examples were selected by picking two unbound CTCFBS with-
out RAD21 on any of the loop windows mentioned. We tested
GM12878 against itself, and K562 against itself as a first ap-
proach, by randomly splitting the dataset using 2/3 to train and
1/3 to test. To test the performance of the predictor on different
cell types, we used GM12878 as a training set and K562 as a
test set. We reported precision, recall and f-score of over 0.83 in
all of the predicted cell lines, however, prediction across cell
lines has lower scores than training and prediction with the
same cell line (Table 1 and Fig. 1A and B, available as supple-
mentary data at Bioinformatics Advances online).

3.2 Prediction based on CTCFBS prediction

CTCF ChIP-seq experiments are not always available, and to
deal with this problem we developed a CTCF binding predictor
based on different genetic and epigenetic features (Villaman
et al. 2023). Since CTCF binding is a very important feature on
the determination of CTCF loops, we wanted to test if the
results from our predictor were able to be used as features for
CTCF loop prediction. We trained the predictor using a similar
protocol to the one mentioned earlier, in this case we employed
the GM12878 cell line, considering DNA accessibility,
h3k4mel, h3k9me3, h3k27me3 and h3k27ac histone marks,
DNA methylation, and FIMO motif score, and used the score

Table 1. Precision, recall, and F-score after predicting CTCF binding.?

Sample Precision Recall F-score
Pred P1 Sample 1 0.92 0.62 0.74
Pred P2 Sample 2 0.93 0.58 0.72
Pred P3 Sample 3 0.91 0.54 0.67
Pred P1 Cross 1 0.93 0.58 0.71
Pred P2 Cross 2 0.91 0.53 0.67
Pred P3 Cross 3 0.93 0.62 0.74
AD Predict 0.75 0.59 0.66

* Sample 1, 2, and 3 uses information from said sample, splits randomly
the CTCFBS on the sample using 2/3rds as a training set and 1/3rd as a test
set. Cross 1, 2, and 3 represents using two samples as a training set and
predicting on the remaining one as a test set. AD Predict uses the three
control patients to predict a patient with AD and cognitive impairment.

Villaman et al.

of the predictor instead of the experimental CTCF ChIP-seq
data. We used the same approach as the first prediction, we ran-
domly split the dataset using 2/3 to train and 1/3 to test. We
also used the scores for testing across cells, using the predicted
GM12878 CTCF binding scores as the training set and K562
CTCF ChlIP-seq data as test set. We reported precision, recall
and f-score of over 0.86, with prediction across cells having a
lower score than training and prediction with the same cell line
(Table 2 and Fig. 2A and B, available as supplementary data at
Bioinformatics Advances online).

3.3 Feature importance determination

To gain insights about the contribution of the different evalu-
ated features into the prediction, we extracted and reported
the feature importance of every feature used in classification.
The most important feature was the FIMO score at the start
of the loop, followed by the presence of bound CTCEF at the
end of the loop. This is expected and it accounts for how the
CTCF loop is being formed; if the start of the loop is con-
served or bound, we can expect to find a loop if the end of
the loop is also conserved or bound. Following these observa-
tions, after binding on the end of the loop the next important
feature is FIMO score on the end, and then CTCF binding in-
side the loop, which may consider unaccounted CTCF bind-
ing nearby the start or the end of the loop. After those
features, the following features were the loop distance and
the histone marks, on any of the reported starts and ends of
loops (Fig. 3A-C, available as supplementary data at
Bioinformatics Advances online).

3.4 Comparison with other methods

We compared the performance of this method against two
other state-of-the-art methods (Kai et al. 2018, Xu et al.
2023). We picked Lollipop (Kai et al. 2018) due to being one
of the legacy CTCF loops predictor, and we used
LoopAnchor (Xu et al. 2023) due to being one of the latest
published CTCF loops predictor by the time of writing. We
trained each predictor with the default features for each,
tested training with GM12878 using default values and fea-
tures for each method, and used chromosomes 2, 20, 21, and
22 of K562 cell line as a test set. We report ROCAUC and
PRAUC of each predictor, finding that our predictor has a
slightly lower ROCAUC than the other predictors, and a bet-
ter performance in terms of PRAUC than Lollipop, but
slightly worse than LoopAnchor (Fig. 4A and B, available as
supplementary data at Bioinformatics Advances online).

3.5 AD CTCF binding prediction

We used FIMO to predict CTCF binding sites on the
GRCh38 reference genome, and used the FIMO scores with
four other different features (CTCF binding motif, DNA ac-
cessibility, h3k4me3, h3k27me3, and h3k27ac) to train a
Random Forest predictor for CTCF binding on three differ-
ent control AD patients, using CTCF ChIP-seq information
as gold standard; 52 435 CTCF binding sites were predicted
by FIMO. We first analyzed each patient by itself, splitting
the whole dataset into 2/3 used for training and 1/3 used for
testing and reported precision, recall, and F-score, and plot-
ted ROCAUC and PRAUC (Table 1, Fig. 1A and B). After
predicting each patient by itself, we used two patients to pre-
dict the third one, to increase the number of available exam-
ples and to confirm if the predictor was able to generalize.
We reported precision, recall, and F-score, and plotted
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Figure 1. CTCF binding prediction on patients without cognitive impairment, using 2/3rds as a training set and 1/3rd as a testing set, using each patient to
predict itself. (A) ROC-AUC. (B) PR-AUC.

Table 2. Top five most disrupted loops for gained and lost loop instances.®

chr startloop endloop Predicted score Discordant score Gene name
chr10 124025000 124095000 8.93E-05 0.999821 CHST15
chr17 59440000 59570000 0.000123 0.999752 DHX40
chrl1 70467000 70756000 0.000143 0.999713 SHANK?2
chr12 40970000 41070000 0.000174 0.999651 CNTN1
chr2 74915000 75405000 0.000182 0.999635 POLE4
chr7 71750000 72640000 0.999581 0.999163 CALN1
chr7 71750000 72640000 0.999581 0.999163 TYW1B
chré 33410000 33580000 0.999782 0.999564 SYNGAP1
chré 33410000 33580000 0.999782 0.999564 GGNBP1
chr8 130290000 130680000 0.999925 0.999851 ASAP1

? Top five are lost loops, Bottom five are gained loops.
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Figure 2. CTCF binding prediction on patients without cognitive impairment and patients with AD and cognitive impairment. (A) ROC-AUC predicting
CTCF binding on three controls using two controls as a training set and the remaining one as a test set. (B) PR-AUC of the same controls. (C) ROC-AUC,
using three control samples to predict the AD sample. (D) PR-AUC using three control samples to predict the AD sample.

ROCAUC and PRAUC (Table 1, Fig. 2A and B). For the AD
dataset we trained the model, used the three patients datasets
and used it to predict the patient with cognitive impairment

and AD, and reported performance afterwards (Table 1,
Fig. 2C and D).

3.6 CTCF loop prediction

For CTCF loop prediction we downloaded Hi-C loop data
from ENCODE and assigned positive and negative loops con-
sidering positive loops as loops with convergent, CTCF-
bound CTCF binding sites with a distance between 2 kb and
2mb, considering earlier mentioned features. We trained a
XGBoost loop predictor and generated predictions for each
loop using controls as a training set and AD patient as a test
set. To finish, we generated scores for loops on the AD sam-
ple and saved them for posterior use.

3.7 Discordant loop determination

We compared the obtained loop scores between the control
sample and the AD sample, and divided the scores between
gained loops (loops with a low score on the control sample
and high score on the AD sample) and lost loops (loops with
a high score on the control sample and low score on the AD
sample), and ranked them based on their discordant loop
score (Table 2). The top predicted lost loops involved the
genes CHST15, DHX40, SHANK2, CNTN1, and POLE4,
and the top predicted gained loops contained SYNGAP1,
GGNBP1, TYW1B, CALN1, and ASAP1. According to bibli-
ography, four of the five top lost loops have been linked to

AD with supported evidence, suggesting a possible link be-
tween loop disruption and AD (Table 3).

4 Discussion

CTCEF is related with multiple functions inside the cell and
determining the full extension of its phenotypic and mecha-
nistic roles remains to be done. Over 60% of the CTCF bind-
ing sites are conserved across different cell lines (Chen et al.
2012), and Rao et al. (2014) reported from 55% to a 75% of
shared conserved peaks in HiC experiments across them.
Under this context, FIMO score can be considered as a proxy
of CTCEF binding site conservation, and FIMO score is consis-
tently one of the most important features in classification
reported by our predictor. Both FIMO score and CTCF bind-
ing were reported as the most important features in CTCF
loop classification, and due to the conservation of CTCF
binding sites between different tissues and cell lines, the de-
tection of conserved CTCF loops is possible using only the
CTCF motif scores with our approach. Other methods to pre-
dict CTCF loops exist, however, they differ in both methods
and performance (Kai et al. 2018, Zhang et al. 2018). One
advantage of this method is prediction across cell lines, how-
ever, a performance reduction in our method is to be
expected due to differences between each particular cell
CTCF landscape. Nevertheless, other approaches have fo-
cused on the importance of the motif sequence and have pre-
dicted loops only training with the CTCF binding sequences
(Zhang et al. 2018) and our results confirm the importance
of these observations.
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Table 3. Genes in disrupted loops and their link with AD.
Gene AD link Citation DOI
CHST15 Neuropathological AD-related gene Silva et al. (2012) 10.1371/journal.pone.0048751
DHX40 Age-dependent differentially methylated Pellegrini et al. (2021) 10.3389/fnagi.2021.639428
SHANK2 Decreased in AD Patel et al. (2023) 10.1016/j.nbd.2023.106192
CNTNI1 Aggravates neuroinflammation in AD Lietal. (2023) 10.14336/AD.2023.0228
POLE4 Reduced CTCF binding in AD Patel ez al. (2023) 10.1016/.nbd.2023.106192
CALN1 Differentially expressed in AD Li and De Muynck (2021) 10.1016/5.bbih.2021.100227
TYW1B Detected in AD neural networks Ghose et al. (2024) 10.1093/bib/bbae704
SYNGAP1 Risk factor in GWAS AD Mez et al. (2017) 10.1016/j.jalz.2016.09.002
GGNBP1 Gametogenetin-binding protein 1, unknown - -

function, no known AD link.
ASAP1 Genetic modulator for Tau pathologies Xu et al. (2024) 10.1007/s00401-024-02703-3

Cell-specific CTCF loops with lower conservation scores
may require different considerations than conserved CTCF
loops, for example, less conserved loops may determine spe-
cific cell processes related directly with lineage specification
(Liu et al. 2023), and training on different cell lines may not
be able to provide proper examples for training, interfering
with the identification of loops across cell lines. Since CTCF
cooperates with lineage-specific pioneer transcription factors
(TFs), such as MyoD, FOXA, and PU.110, including expres-
sion data of these factors may improve cell-specific loop reso-
lution. We considered only the presence of features inside the
loop, or around the start or end of the loop, since we deemed
the presence of a feature to be more relevant than its exact lo-
cation on the sequence. However, we can increase the resolu-
tion by creating bins inside the analyzed regions of the CTCF
loop to improve performance, especially if features related to
opposite biological phenomena occupy the same region, such
as DNA methylation and DNA expression, or h3k27ac
and h3k27me3.

We reported relatively good performance using in silico
predicted CTCF binding scores using two different cell lines.
The two cell lines were selected according to the assays avail-
able at the time of the study. K562 is a widely used human
leukemia cell line with an extensive genomic and epigenomic
characterization (Zhou et al. 2019), while GM12878 is an
EBV-transformed human B-lymphoblastoid cell line (Lin
et al. 2022). It is well known that bypassing cellular senes-
cence, either due to the tumoral cellular origin or via the im-
mortalization process of primary cells, required additional
mutation and/or epigenetic alterations. These mechanisms
contribute to both inter- and intra-cell line heterogeneity and
may have an influence on results outcomes (Zhu et al. 2023).
Nonetheless, our work proposes a useful model to predict
CTCF loops, which will be further strengthened as more hu-
man cell lines are characterized by multiomics profil-
ing assays.

We considered overfitting as a possible issue, as we have
evaluated the use of GM12878 multiple times during the de-
velopment of this work. However, in earlier work by the
same authors (Villaman et al. 2023), and other methods of
TF binding prediction such as msCentipede (Raj et al. 2015)
and Catchitt (Keilwagen et al. 2019) also report improved
results on GM 12878 when compared to other cell lines from
the ENCODE dataset. We believe that the results are not re-
lated to overfitting, and they are related with better quality of
the hg19 GM 12878 dataset when compared to the rest of the
ENCODE datasets.

Testing across multiple cell lines would improve the num-
ber of available examples, improving performance on shared

loops, however, an impaired performance could be expected
on cell-specific loops. Including additional features such as
methylation, gene expression, or DNA accessibility would
contribute to identify cell-specific loops if the conservation of
their CTCF binding sites is low, nonetheless loops with
weaker CTCF binding would most likely be exclusive to the
cell and related with its own transcriptional landscape, mak-
ing possible that the inclusion of extra features does not im-
prove the performance of the predictor. Nevertheless, the
relationship between performance improvement versus per-
formance impairment remains to be studied. We were able to
predict with over 0.9 F-score on the analyzed cell lines, with
the worst performance obtaining when predicting training
across cell lines, highlighting the idea that conserved loops
share similar features while cell-specific loops present singu-
lar features. We plan to expand the array of both features
and cell lines included on CTCF loop prediction to improve
prediction performance, and at the same time to provide new
insights about the role of CTCF loops across the myriad of
existing human cell types.

Importantly, our results suggest the existence of two differ-
ent kind of CTCF binding sites, conserved ones shared across
cells, and cell-exclusive CTCF binding sites. In fact, there is
evidence sustaining that conserved CTCF sites have a struc-
tural function while non-conserved ones have a regulatory
function (Plasschaert et al. 2014, Marina-Zarate et al. 2023).
Since there is a direct relation between CTCF binding site
conservation and loop presence (Zhang et al. 2018), loops
can be divided between shared loops with high CTCF binding
site conservation between cell lines, and less conserved cell-
specific loops. The samples analyzed from dorsolateral pre-
frontal cortex were sequenced from a combination of many
different cell types on different states, in both the controls
and the AD and cognitive impairment samples, and it is plau-
sible that our predictor was capable of resolving shared
CTCEF binding sites but not cell-exclusive CTCF binding sites.
This also supports the idea that there are also two kinds of
CTCF loops, ones formed between conserved CTCF binding
sites and cell-exclusive loops formed between less conserved
CTCF binding sites. This idea is confirmed by many different
authors (Martin et al. 2011, Wang et al. 2021, Xu et al.
2023). If the predictor is not able to properly identify CTCF
binding, it would also not be able to properly resolve the cell-
exclusive CTCF loops since they are dependent on the CTCF
binding score feature. Another factor is the idea that changes
in control patients and AD samples are related with the cell
composition and cell death inherent with AD (Johnson et al.
2020), however, since the CTCF loop landscape is mostly in-
variant, it is possible to suggest that the changes in CTCF
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loops, especially those with a high CTCF binding score, ac-
count directly for AD-related abnormalities and are shared
across the analyzed tissue cell types.

Another issue to consider is the fact that changes in CTCF
binding and looping may not affect gene expression directly,
however, loss of CTCF binding may prevent the formation of
CTCEF loops in response to cellular events, affecting the abil-
ity of the cell to maintain homeostasis (Kaushal er al. 2021,
Xu et al. 2021), this suggesting that changes to CTCF in AD
may be a cumulative trait during the development of this dis-
ease. A proper progression of CTCF loop disruption in AD
cannot be established due to the lack of available data, but
we expect that as more AD datasets become available, more
information would be available about AD and CTCF loop
during the development of the disease.

There are reports of lower CTCF binding in AD samples, sug-
gesting altered methylation as a possible mechanism of CTCF
binding disruption (Patel et al. 2023). Conserved CTCF binding
sites are shared across cell lines, and impaired CTCF binding on
conserved CTCF sites may be a hallmark of this disease.
However, if the loss of CTCF binding is random or gene-
specific remains to be determined. Abnormal DNA methylation
is a hallmark linking CTCF and different kinds of cancer
(Damaschke et al. 2020), this connection can be explained by
the abrogation of CTCF binding by methylation and the devel-
opment of cancer-specific expression landscapes leading to
cancer-specific hypermethylation (Damaschke et al. 2020), but
if the loss of CTCF in AD leads to AD-specific methylation and
gene expression is not yet verified.

Importantly, we found discordant loops and divided them
in two groups, loops gained on AD and loops lost in AD. We
suggest that loops gained in AD are representative of the dif-
ferent cell composition during the development of AD while
comparing AD and control samples, and loops lost on AD
are directly related with impaired CTCF binding shared
across cells in the dorsolateral prefrontal cortex. CTCF binds
to unmethylated DNA sequences (Holwerda and De Laat
2013, Prickett et al. 2013, Maurano et al. 2015) and it can
bind to DNA damage sites and activate a cascade reaction
resulting in DNMTT1 inactivation and DNA demethylation
(Zampieri et al. 2012). Moreover, CTCF is also related to
patterns of histone modifications and is especially required to
implement both H3K27ac and H3K27me3 (Wang et al.
2021). While their defects may rewire genome-wide chroma-
tin accessibility and have serious implications on the normal
cell expression program (Xu et al. 2021). Thus suggesting
that the decline in CTCF binding with age may be an initial
mechanism in AD pathogenesis (Wang et al. 2020, Hou et al.
2021). One of our main issues was data availability, as the
Hi-C experiments required to confirm CTCF loops are not
readily available for the conditions we wanted to evaluate,
and we have not evaluated our approach in other datasets
again due to the earlier lack of data mentioned. While it may
not be possible to extend the results to the whole spectrum of
AD etiology due to an inherent lack of robustness, we can
also acknowledge the fact that the genes involved in the loops
predicted as lost have also been experimentally described as
relevant in AD, such as SHANK2 (Patel et al. 2023) and
POLE4 (Ferrer et al. 2021, Patel et al. 2023). Patel and col-
laborators also analyzed the RUSH ENCODE dataset, how-
ever, while there is an overlap in controls, there is no overlap
in AD cases, and while our results could be describing an iso-
lated case, we believe that the similarity in results highlights
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and underlying mechanism and not a singular phenomenon.
Nevertheless, caution should be advised while interpreting
these results, and we expect to expand on them on fur-
ther analyses.

We report CTCF loop loss on genes directly related with
AD on AD sample dorsolateral prefrontal cortex, however,
we lack enough information to suggest the mechanism behind
it. There is also evidence of interactions between APOE and
CTCEF and it is possible for CTCF to make protein complexes
directly with AB peptides or Tau hindering its ability to bind
DNA (Del Moral-Morales et al. 2023), however, more stud-
ies on the topic are required to confirm the existence of either
a pattern or a mechanism confirming the role of CTCF and
CTCF looping in AD. Finally, our evidence shows concrete
links between epigenetics, CTCF, and the etiology of LOAD,
and the exploration of those links may provide new clues
about development of LOAD and possible therapeutic targets
to this disease in the future.

5 Conclusion

We developed a CTCF loop predictor that can use CTCF
binding predictions with similar performance to other state-
of-the-art predictors and used it to gain new insights on AD.
We identified that CTCF binding site conservation and CTCF
binding are the most important features in loop classification,
consistent with observations on different cell lines. We identi-
fied that conserved CTCF binding sites and conserved CTCF
binding are related with CTCF loops, and CTCF loops with
weaker conservation scores and CTCF binding may be re-
lated with cell-specific CTCF binding, requiring the inclusion
of more features to be properly resolved. We predicted CTCF
binding and CTCEF loops in three control samples and an AD
sample using genetic and epigenetic features. We reported
loop disruption when comparing the control and the AD
sample and found that the top disrupted loops were genes
that were reported as AD-related in bibliography. We expect
to expand on both the amount of analyzed cell lines and fea-
tures included in the nearby future to provide new knowledge
about CTCF function across different cell lines. Importantly,
with the currently available information it is not possible to
elucidate a clear biological mechanism besides correlation,
and more studies are required to confirm the extent of disrup-
tion of CTCF binding and CTCF loops in AD. Nevertheless,
our observations support the fact that there is a link between
CTCEF and the etiology of AD.
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