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Abstract

Cardiopulmonary bypass (CPB) can lead to cardiac damage due to oxidative stress (OS)
and inflammation in heart failure (HF). We tested the hypothesis that preoperative HF
patients with reduced ejection fraction (HFrEF) subjected to CBP have higher levels of OS
and NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) in heart and plasma and
in those that develop postoperative AF (pAF) as a clinical outcome. HF was categorized
for preoperative left ventricular EF: preserved (HFpEF > 50%, n = 27) and reduced EF
(HFrEF < 40%, n = 25). Samples of atrial tissue, pericardial fluid, and plasma were collected
at surgery to assess NLRP3 expression; 3-nitrotyrosine (3-NT), thiobarbituric acid reaction
(TBARS), and nuclear factor erythroid 2-related factor 2 (Nrf2) in atrial tissue; NLRP3,
IL-183, and IL-18 expression in pericardial fluid; and antioxidant capacity, 8-isoprostanes,
and malondialdehyde (MDA) in plasma. Reactive oxygen species, 3-NT, and NLRP3
in atrial tissue were determined by immunohistochemistry in a subset of pAF patients.
Plasma and atrial tissue 3-NT and MDA were higher in HFrEF compared with HFpEFE.
Lipid peroxidation products were higher in both plasma and atrial tissue in pAF (n = 29),
compared to sinus rhythm (SR) (n = 23). In HFrEF patients, the values of tissue ROS, 3-NT,
and NLRP3 were higher than in HFpEF patients. In addition, the expression levels of
NLRP3, IL-1$3, and IL-18 were higher in atrial tissue and pericardial fluid in HFrEF. Patients
with preoperative HFrEF showed higher OS in plasma and the expression of NLRP3, ROS,
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and 3-NT in atrial tissue biopsies and pericardial fluid. This finding suggests a potential
pharmacologic therapy for pAF and clinical complications due to CPB.

Keywords: heart failure with reduced left ventricular ejection fraction; HF with preserved
ejection fraction; NLRP3; 3-nitrotyrosine; oxidative stress markers; postoperative atrial fibrillation

1. Introduction

During cardiac surgery with extracorporeal circulation, the use of cardiopulmonary
bypass (CPB) can lead to myocardial injury due to multiple factors. Among these fac-
tors, oxidative stress (OS) and inflammation are significant contributors that may lead to
contractile dysfunction by initiating a series of processes that may result in pathological
remodeling. This cardiac remodeling involves a series of molecular, cellular, and interstitial
changes that occur after injury, often manifesting clinically as alterations in size, mass,
geometry, and heart function [1]. Interestingly, the molecular and cellular processes related
to cardiac remodeling are more pronounced in patients with preoperative heart failure with
reduced ejection fraction (HFrEF), which may increase the susceptibility of myocardial
tissue to the effects induced by CPB. Understanding the potential bidirectional interactions
between CPB and cardiac remodeling is crucial, as this could suggest a higher incidence of
postoperative complications when both conditions occur simultaneously in patients.

Additionally, patients undergoing CBP may also have heart failure with preserved
ejection fraction (HFpEF) as a previous condition. The functional capacity and quality of
life in HFpEF patients are significantly impaired, leading to high morbidity and mortality
rates [2], so this condition could represent an additional risk for patients who undergo
CPB. However, to date, the interaction between CPB and cardiac remodeling in patients
with HFpEF has not been thoroughly evaluated. Furthermore, patients undergoing CPB
may also experience postoperative arrhythmias, including atrial fibrillation (AF), which
can be self-limiting but also associated with increased morbidity, mortality, and healthcare
costs. Postoperative atrial fibrillation (pAF) is a common complication of cardiac surgery
with extracorporeal circulation, contributing to longer hospital stay, higher medical costs,
and increased mortality rates [3]. Despite efforts to optimize anesthetic protocols, surgical
techniques, and medical treatments, including the use of antiarrhythmic medications such
as beta-blockers and amiodarone, the incidence of pAF remains notably high, ranging from
27% to 55% [4]. This highlights the need for new markers and pharmacological targets,
given the suboptimal effectiveness of current perioperative pharmacological treatments.
Although the exact pathophysiological cause of pAF remains unclear, it is believed to have
multiple contributing factors. Potential causes of pAF include atrial dilatation, age-related
fibrosis, cardiac structural damage, hypertension, and other comorbid conditions [5,6]. Cer-
tain patients, especially those with cardiovascular risk factors or specific types of cardiac
surgery, such as valvular pathologies, may be more susceptible to developing AF postoper-
atively [7]. Additionally, from an electro-physiological perspective, the substrate could be a
pre-existing condition associated with the development of heterogeneous refractoriness
after surgery [8]. These events could be linked to imbalances in calcium homeostasis, which
might activate reentry mechanisms [9].

In addition to the aforementioned risk factors and electrophysiological changes associ-
ated with pAF, significant inflammatory and oxidative stress mechanisms may also play a
role at both molecular and cellular levels as a result of surgery and CPB [10]. Specifically,
the surgical procedure may also contribute to the development of pAF due to operative
trauma from dissection, tissue manipulation, and pericardial inflammation due to cell
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infiltration, such as that of peripheral blood mononuclear cells [9]. However, it remains
unclear whether inflammation acts mainly as a systemic or local phenomenon reflecting an
active inflammatory process within the heart [11,12]. The migration of various inflamma-
tory cells can also trigger oxidative stress (OS) injury, increasing reactive oxygen species
(ROS) production from their cellular sources [13]. Markers indicative of a prooxidant
imbalance towards OS, such as malondialdehyde (MDA), carbonylated proteins, and lower
levels of reduced glutathione (GSH), have been reported as a consequence of ROS burst
during early reperfusion after cardiac surgery [14]. These cellular events related to OS and
inflammatory processes could potentially be associated with pAF, rather than just being an
epiphenomenon to cardiac surgery [15,16]. This has led some researchers to propose that is-
chemic time and the subsequent OS during early reperfusion could be potential triggers for
pAF [16]. In this context, the oxidative burst may partially cause and determine electrical
remodeling processes that trigger more significant reentry activity and, therefore, a greater
susceptibility to developing AF and its perpetuation [17]. Our previous trial demonstrated
a relationship between ischemia-reperfusion (IR) injury and oxidative modification in the
atrial tissue of patients undergoing CPB [15]. Indeed, the incidence of pAF is associated
with reperfusion time during surgery, which also influences the induction of certain ROS
sources, such as NADPH oxidase [13]. In addition, an active cardiac remodeling process oc-
curring in patients with HFrEF could indirectly affect oxidative balance and inflammation,
leading to the occurrence of pAF in patients undergoing CPB [18].

However, the mechanisms linking the occurrence of pAF in patients with preserved
LVEF who underwent CPB, and a potential substrate for cardiac remodeling, have not
yet been well established. From a clinical perspective, some clinical trials have indicated
a relationship between ventricular function and postoperative complications in patients
undergoing coronary artery bypass grafting [19,20]. In terms of identifying potential
predictors of pAF and cardiac remodeling, it has been clinically reported that subclinical
atrial abnormalities, as assessed through preoperative left atrial strain measurements in
patients undergoing CPB, can serve as predictors of postoperative complications and long-
term ventricular remodeling [20,21]. Recent evidence suggests that patients with HFrEF
have worse postoperative outcomes and show molecular and cellular events associated
with greater myocardial inflammation [22,23]. In this context, the NLRP3 inflammasome,
which is expressed in cardiomyocytes and cardiac fibroblasts, has been identified as playing
a key role in the development of HF and AF, making patients with pre-existing HFrEF the
focus of numerous clinical studies exploring intervention strategies at this level. Conversely,
HFpEF has been linked to metabolic and non-ischemic risk factors, but further research is
needed to better characterize the local inflammation and myocardial remodeling events
associated with HFpEF [24].

However, the association of a prooxidant imbalance and inflammation in cardiac
tissue in patients with a potentially active remodeling process, such as those with a HFrEF
who are undergoing CPB, has not yet been characterized. This pilot clinical study aims
to determine if preoperative HFrEF is a factor that influences a prooxidant imbalance in
patients subjected to cardiac surgery with CPB and whether this could be related to the
activation of the NLRP3 pathway, leading to a higher risk of pAF and, eventually, atrial
remodeling phenomena.

2. Materials and Methods
2.1. Subjects and Clinical Follow-Up

A prospective study was conducted on patients referred to the Cardiac Surgery Depart-
ment at the National Thoracic Institute in Santiago, Chile, from 1 October to 31 December
2023. Fifty-two patients were eligible for the study, which included two groups: (i) HF
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patients with preserved LVEF (HFpEF, n = 27) and (ii) HF patients with reduced LVEF
(HFrEF n = 25) (Figure 1, CONSORT flow chart). The inclusion criteria were age > 18 years
and chronic heart failure (WHO-functional class II, IIT) for at least three months before
surgery. At the baseline visit, 7-10 days before surgery, the patients were classified by
echocardiography as HF with pLVEF (HFpEF > 50%) or HF with rLVEF (LVEF < 40%).
Patients with a history or evidence of AF, previous myocardial infarction, current use of
amiodarone, severe congestive heart failure (New York Heart Association class IV), presence
of prosthetic valves, congenital valvular disease, chronic rheumatic, neoplastic diseases,
liver insufficiency, severe chronic kidney disease (serum creatinine > 2.5 mg/dL), recent
infections (<2 weeks), and emergency surgery or repair of cyanotic heart disease were
excluded from the study. In addition, patients receiving nonsteroidal anti-inflammatory
drugs, corticosteroids, antioxidants, vitamins, or fish oil supplements three months before
surgery were also excluded. This protocol adhered to the Helsinki standards and was
approved by the Local Ethics Committee (06/2020-Bioethic East Health Committee-12/21).
The study was registered under ClinicalTrials.gov Identifier NCT06256965.

Inclusion criterial

T -Informe consent
Elegibility -Emergency surgery
Pre-operartive echocardiogram -Age 218 years,
-Chronic heart failure for at
Day -7 least three months before
surgery
All Samples for determinations:
HFpEF (n=27); HFrEF (n=25)
-Plasma FRAP, MDA, 8-isprostanes
HFpEF HFrEF -3.Nitrotyrosine (NT)
(n=27) (n=25)
POAF monitoring Western Blot assay:
HFpEF (n=7); HFrEF (n=5) for NT
HFpEF (n=5); HFrEF (n=4) for Nrf2
Immunofluorescent measurements
pAF SR PAF SR FLVEF (n=5) pLVEF (n=7)
(n=10) (n=17) (n=19) (n=6) ROS - NLRP3 - 3 NT and

l Oxidative stress imbalance }
FRAP, MDA, 8-isoprostane and 3-NT in plasma
TBARS, 3-NT in atrial tissue.

Figure 1. Flow chart of patients’ follow-up, according to CONSORT 2010 guidelines. Included
subjects analyzed for each biochemical and WB assay.

2.2. Post-Operative AF Detection

Continuous electrocardiogram monitoring was performed for 72 h after cardiopul-
monary bypass. If arrhythmia symptoms were observed, a 12-lead ECG was performed
every 12 h for seven days. The presence of ECG-documented atrial fibrillation lasting at
least one minute was classified as a postoperative atrial fibrillation event.

2.3. Samples and Biopsies

All patients underwent the same surgical procedure, including standardized induction
and anesthesia protocols, with the surgical intervention performed by the same medical
team. Surgical access was obtained through a median sternotomy incision, and all anas-
tomoses were sutured by hand. Protection of myocardial tissue was accomplished with
crystalloid cold potassium cardioplegic solution. During cardiac surgery, at the time of
pericardiocentesis, samples from the right atrial appendage (RA) (approximately 200 mg)
and pericardial fluid 10 mL were collected immediately before the initiation of extracorpo-
real circulation. Biochemical analyses of oxidative stress markers in plasma, atrial tissue,
and pericardial fluid (inflammasome NLRP3 pathway), were determined in all recollected
samples (n = 25 for HFrEF; n = 27 HFpEF). These samples were immediately frozen in liquid
nitrogen and stored at —80 °C. Blood samples were collected in chilled vacutainers con-
taining four mM disodium EDTA and centrifuged at 3000x g for 10 min. Plasma samples
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from each patient were stored at —80 °C until we performed biochemical determinations
of NT-proBNP and troponin levels using ELISA assay [25].

2.4. Pre-Operative Echocardiographic Images

All echocardiographic analyses were conducted at the National Thorax Institute
Echocardiography Unit using GE Vivid E9 equipment at the baseline visit (7 days before
surgery). The strain analyses were performed using a semi-automated speckle tracking
technique (EchoPAC, EchoPAC Software Only and EchoPAC Plug-in GE Medical Systems,
Milwaukee, WI, USA) using a model of the entire LV (based on three apical views). Seg-
ments with inadequate tracking were excluded. A 3D full-volume acquisition of the LV
was attempted in all patients using a matrix array transducer with the highest possible
volume rate. LV volumes and LVEF were measured offline (3DLVQ, EchoPAC, GE Medical
Systems, Milwaukee, WI, USA), with abnormal LVEF identified as <40% [26].

2.5. Biochemical Parameters

Determinations in plasma, atrial tissue, and pericardial fluid samples (obtained during
cardiac surgery at the time of pericardiocentesis) were treated under the same experimental
conditions. Regarding these assays were assessed in the same number of samples.

2.5.1. Determination of Oxidative Stress-Related Markers
Antioxidant Status

Plasma antioxidant status was assessed by determining the ferric-reducing ability of
plasma (FRAP) with a detection limit of 10 uM-Fe?* [27]. FRAP’s inter-assay and intra-assay
coefficients of variation (CVs) were 3.0% and 1.0%, respectively. FRAP was expressed as
umol of Fe+2/L of plasma.

Oxidative Stress Markers

Plasma and atrial tissue lipid peroxidation were assessed by the TBARS at pH 3.5,
followed by solvent extraction with a mixture of n-butanol/pyridine (15:1, v/v) [28]. Tetram-
ethoxypropane was used as the external standard, and the levels of lipid peroxides were
detected spectrophotometrically at 532 nm and were expressed as umol malondialdehyde
(MDA)/L plasma (umol/L) or mg of protein (Bradford Assay). The inter-assay and intra-
assay CVs for TBARS were 10.5% and 4.8%, respectively. In addition, 3-nitrotyrosine
(3-NT) in plasma and atrial tissue (Abcam Laboratories, Cambridge, UK, ab116691), and
8-isoprostanes (Cayman Chemicals, Ann Arbor, MI, USA, Item No 516351) were determined
with a specific enzyme immunoassay kit following the manufacturer’s recommendations.
The ELISA kit’s detection limit for 3-NT was 8 ng/mL, and 8-isoprostanes was 3 pg/mL.
The estimated variability of the method for 3-NT was 6.9% for the inter-assay, 13% for
the intra-assay, and that of the 8-isoprostanes was 4.2% for the inter-assay, 8.1% for the
intra-assay [29,30].

2.5.2. Immunoblot Analysis

The total tissue lysates were stored at —80 °C. The protein contents in the homogenate
were measured using the Bradford assay (Bio-Rad, Hercules, CA, USA, 500-0006). Equiva-
lent amounts (30 ug) of each protein extract were denatured in 5x sample buffer (2% sodium
dodecyl sulfate, 62.5 mM Tris (pH 6.8), 0.01% bromophenol blue, 1.43 mM mercaptoethanol,
and 0.1% glycerol), separated on 10% polyacrylamide gels, and electrophoretically trans-
ferred onto a nitrocellulose membrane (PerkinElmer, Providencia, Chile, Protan BAS85).
After blocking with 4% BSA in 1X PBS, membranes were incubated overnight at 4 °C
degree specific antibodies of 3-NT (1:1000; ab61392, Abcam, Cambridge, UK); NRF2 (1:2000;
ab31163, Abcam) and the housekeeper proteins, glyceraldehyde-3-phosphate dehydro-
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genase (Gadph; 1:2000; D16H11, Cell Signaling Technology, Danvers, MA, USA) or «/ 3-
Tubulin (1:2000; #2148; Cell Signaling Technology), followed by goat anti-mouse (1:2000;
31430, Thermo Scientific, Waltham, MA, USA) and rabbit (1:2000; 31460, Thermo Scientific)
secondary antibodies, respectively. Immunostaining was performed using chemilumi-
nescent reagents (SuperSignal West Pico Luminol/Enhancer solution; Thermo Scientific,
34080). The immunoblot signals were revealed with a chemiluminescence scanner (Odyssey
Imaging System, Li-Cor Biosciences, Lincoln, NE, USA), quantified by densitometry with
Scnlmage Software, v4.0 (https:/ /scion-image.software.informer.com/4.0/, accessed on
13 January 2025) and normalized by GADPH or «/ 3-Tubulin protein expression.

2.5.3. RT-PCR NLRP3, IL 1-$ and IL-18

According to the manufacturer’s protocol, total RNA was obtained from a rat’s heart
employing the SensiFAST cDNA Synthesis kit (Bioline, Toronto, ON, USA). The concentration
and purity of RNA were determined by absorbance at 260/280 nm. A Techne Tc-4000 thermal
cycler (Thermo Fisher Scientific Inc, Waltham, MA, USA) performed the reverse transcription
reaction following the following protocol: 10 min at 25 °C, 15 min at 42 °C, and 5 min at 85
°C. Real-time PCR was performed using Stratagene Mx3000P (Stratagene, La Jolla, CA, USA)
using Brilliant III Ultra-Fast SYBR QPCR master mix amplification kit (Agilent Technologies,
Santa Clara, CA, USA). The primers used were: NLRP3 Reverse 5 AAC CAA TGC GAG
ATC CTG AC 3'/Forward 5 TGA AGC ATC TGC TCT GAC AC 3’; IL 1 Beta Reverse
5 TTAGAACCAAATGTGGCCGTG 3’ /Forward 5 TCCCCAGCCCTTTTGTTGA 3’;IL-18
Reverse 5 CTAGAGCGCAATGGTGCAATC3' /Forward5’ GACGCATGCCCTCAATCC3' [31].

A typical reaction contained 250 nmol/L of forward and reverse primer, 1 uL cDNA,
and the final reaction volume was 20 uL. All primers used presented optimal amplification
efficiency (between 90% and 110%). PCR amplification of the housekeeping gene o-actin
was performed as a control. Thermocycling conditions were as follows: 95 °C for 5 min and
40 cycles of 90 °C for 15 s, 60 °C for 15 s, 72 °C for 15 s. Expression values were normalized
to x-actin and are reported in units of 2-C+ s.d. as described [32]. CT value was determined
by MXPro software (https://www.selectscience.net/product/ mxpro-et-qpcr-software,
accessed on 13 January 2025) ET when fluorescence was 25% higher than the background.
PCR products were verified by melting curve analysis.

2.5.4. Enzyme-Linked Immunosorbent Assay (ELISA)

IL-1B and IL-18 levels in pericardial fluid were analyzed using an ELISA kit according
to the manufacturer’s recommendations (Human IL-1 beta ELISA Kit, Catalog Number:
ELH-IL1b-Thermo Fisher Scientific Inc., Waltham, MA, USA; Human Total IL-18/IL-1F4,
Catalog Number DL180, Thermo Fisher Scientific Inc., Waltham, MA, USA). Briefly, 100 pL
of IL-1$3 and IL-18 standards or cell-free medium of samples were added to human anti-IL-
1 and anti-IL-18 antibody-precoated microwells. The microtiter plate was then incubated
for two hours at room temperature (RT) and washed with PBS containing 0.5% Tween
20. Afterward, biotinylated anti-IL-1§3, anti-IL-18 antibodies, and horseradish peroxidase
(HRP)-streptavidin were added to the wells for 1 h at room temperature. In the last step,
a substrate solution was added in the dark at RT for 30 min, and the enzymatic reaction
was stopped using a stop solution provided with the kit. The absorbances of the immune
complexes formed in the wells were read using a TECAN Infinite 200 microplate reader
(LifeSciences, Grodig, Austria) at OD450 nm with a reference reading at OD650 nm. Data
were calculated according to the standard curves generated by the reference standards of
IL-13 and IL-18 and reported as an average of three technical repeats.
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2.5.5. proBNP and Troponin Levels in Plasma Samples

proBNP was measured in all EDTA-plasma samples from patients using commercial
proBNP Kit assays (Human proBNP ELISA Kit Catalog Number #: ELH-proBNP, Ray-
Biotech, GA, USA) and was expressed as ng/mL. Also, Human Cardiac Troponin I (cTnl)
ELISA Kit Catalog #: ELH-CTNI was measured and expressed as pg/mL [33].

2.5.6. Immunolabeling and Fluorescent Microscopy

The tissue samples were mounted in Tissue-Tek, and cryosections 10 um thick were
prepared. Cryo-sections were air dried and fixed for 10 min in 4% paraformaldehyde.
After washing in phosphate-buffered saline, sections were incubated with 1% bovine
serum albumin for 30 min to block non-specific binding sites. Then, the samples were
incubated overnight with primary antibodies against nitrotyrosine (Merck Millipore, Seoul,
Republic of Korea, AB 06-264) and NLRP3 (Abcam, ab283819). Secondary antibody was a
donkey anti-rabbit IgG-conjugated with Alexa488 (Molecular Probes, Eugene, Oregon). In
situ reactive oxygen species (ROS) were determined and quantified using labeling with
dihydroethidium as described (see references). Tissue sections were examined by laser
scanning confocal microscopy (Leica, Wetzlar, Germany, TCS SP2) or with a fluorescent
microscope (Leitz DMRB using a Leica Planapo x40/1.00 or x63/1.32 objective lens, Leica,
Wetzlar, Germany).

Quantitative Immunofluorescent Measurements

Cryosections from at least two different tissue blocks in each case were used. All
samples were immunolabeled simultaneously under identical conditions of fixation and
dilutions of primary and secondary antibodies. Sections exposed to PBS instead of primary
antibodies served as negative controls. For each patient, at least 10 random fields of vision
were analyzed with a fluorescent microscope Leica (Leitz DMRB) using a x40 Planapo
objective (Leica). Immunolabeled cryosections were studied using image analysis (Leica)
and Image ] software (https://imagej.net/ij/download.html, accessed on 10 January 2025).
For each protein, a specific setting was established and kept constant in all measurements.
The area of specific labeling for ROS, nitrotyrosine, and NLRP3 was calculated as a per-
centage of positive labeling per 1 square mm of atrial tissue area. Series of confocal optical
sections was taken using a Leica Planapo x40/1.00 or x63/1.32 objective lens. Each recorded
image was taken using dual-channel scanning and consisted of 1024 x 1024 pixels. To
improve image quality and to obtain a high signal-to-noise ratio, each image from the
series was signal-averaged. Tissue sections were examined by laser scanning confocal
microscopy (Leica TCS SP5). Series of confocal optical sections was taken using a Leica
Planapo x63/1.32 objective lens. Each recorded image was taken using multi-channel scan-
ning and consisted of 1024 x 1024 pixels. To improve image quality and to obtain a high
signal-to-noise ratio, each image from the series was signal-averaged and was deconvo-
luted using AutoQuant X2 (Bitplane, Ziirich, Switzerland) software. For three-dimensional
image reconstructions, an Imaris 6.3.1 multichannel image processing software (Bitplane,
Zirich, Switzerland) was used [34-36].

For quantification of nitrotyrosine and NLRP3, all tissue samples were immunolabeled
simultaneously with identical conditions of fixation and dilutions of primary and secondary
antibodies. Ten random fields of vision were quantified using the three-dimensional
“Quantification” option of the Imaris program. For each quantification procedure, a specific
setting was established and kept constant in all measurements. Quantification of ROS
and nitrotyrosine was performed by measuring the fluorescence intensity using a range
of 0 to 255 gray values. The quantity of ROS, nitrotyrosine, and NLRP3 was calculated as
fluorescent arbitrary units (AU per unit myocardial area (AU/ um?) [37].
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2.5.7. Statistical Analysis

Shapiro-Wilk test was used to assess whether the data were normally distributed.
A two-sample Wilcoxon rank-sum test will be used to evaluate variable medians. If
the values are not normally distributed, a U-test and the Kruskal-Wallis statistic will be
used. Descriptive statistics of continuous variables were presented as mean + SEM, or
frequency (%), and compared by the Mann—-Whitney U test. Spearman test was used to
assess the association between oxidative stress markers and LVEF values. A p-value < 0.05
was considered statistically significant. Regarding sample size, considering differences
in MDA of 40% between groups (HFrEF vs. HFpEF), an SD of 0.5, an effect size of 0.5
for the intervention with 80% power and alpha error of 0.05, 23 patients are needed.
(http:/ /www.winepi.net/f108.php, accessed on 4 March 2025). These changes for MDA
levels in plasma were analyzed in previous paper published by our group [12].

All statistical analyses were performed using Microsoft Excel and STATA 10.00 for
Windows.

3. Results

3.1. Clinical and Perioperative Characteristics

The mean LVEF was 55.7 £ 8.4 for the HFpEF group and 35.3 & 7.1 for the HFrEF
group (p = 0.02). Baseline clinical characteristics were obtained 7 days before surgery
(Table 1). There were no significant differences in the demographic characteristics, comor-
bidities, and preoperative pharmacotherapy between the two groups. Specifically, in terms
of preoperative pharmacotherapy, the study noted that the use of beta-blockers and an-
giotensin receptor blockers, which could influence the ventricular contractile response and
AF incidence, was similar across both groups. In terms of echocardiographic parameters,
the HFrEF group showed higher LA volume index (17.4 £ 2.4 vs. 12.5 £ 1.5, p = 0.04) and
LV mass index (116.3 £ 7.8 vs. 87.5 £ 2.5, p = 0.03), indicating LV diastolic dysfunction and
LV hypertrophy, respectively. Regarding perioperative features, there were no significant
differences in hemodynamic variables associated with cardiopulmonary bypass.

3.2. Antioxidants and Oxidative Stress Markers in Plasma and Atrial Tissue

Patients with HFrEF showed a significant increase in oxidative markers of lipid
peroxidation and protein oxidation, such as 8-isoprostane and nitrotyrosine levels in plasma
and atrial tissue, compared to HFpEF patients, respectively (Figure 2C-E). However, Nrf2
protein levels were similar in both groups (Figure 2F). The full-screen western blot are
included in Supplementary Figure S1.

3.3. Association Between LVEF and Oxidative Stress Markers

Regarding the correlation between oxidative stress marker values and LVEF (%), only
nitrotyrosine levels showed a negative correlation in both groups. Specifically, for 3-NT
plasma levels (n = 20), the correlation coefficients were r?=0.781 (p =0.0018) in the HFrEF
group, and r?= 0.788 (p = 0.0044) in the HFpEF group (Figure 3A). Similarly, for 3-NT
atrial tissue levels (n = 20), r’= 0.728 (p = 0.009) in the HFrEF, and r?= 0.763 (p = 0.003) in
the HFpEF group (Figure 3B). Additionally, a positive correlation between 3-NT levels
at surgical time was observed between atrial and blood samples (n = 20), with r?> =0.893
(p = 0.002) (Figure 3C).
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Figure 2. Oxidative stress and antioxidant status of enrolled patients preoperatively as pLVEF
(n = 27) or rLVEF (n = 25). Plasma antioxidant capacity (A), FRAP, the ferric reducing ability
of plasma, malondialdehyde (B), and 8-isoprostane levels in plasma (C). Nitrotyrosine levels in
plasma (D) and atrial tissue (E) and NRF2 protein levels in atrial tissue (F). (G,H) groups are
photographs representative of Western blot 3-NT for HFpEF (n = 7) and HFrEF (n = 5); and NRF2 for
HFpEF (n = 5) and HFrEF (n = 4). Values are means + SEM. Significant differences (p < 0.05): * vs.
PLVEE. FRAP: ferric reducing ability of plasma; MDA: malondialdehyde; NT, nitrotyrosine; GADPH,
glyceraldehyde-3-phosphate dehydrogenase.
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Figure 3. Association between LVEF and oxidative stress markers. Correlation between values of
LVEF (%) and plasma nitrotyrosine levels (nmoles/L) (A) and atrial tissue levels (arbitrary units, AU)
(B). Correlation between atrial and blood samples of 3-NT at surgical time (C). The Spearman test
obtained values of r2.

Table 1. General clinical characteristics of patients.

Clinical Parameters (;LZ];; (I;I':];f) p-Value
Age 57.6 (56-61) 64.7 (58-67) 0.63
Sex (M/F) 15/10 18/9 0.47
BMI 29.8 (25-33) 31.3 (26-35) 0.45
Comorbidities

Essential hypertension 12 14 0.66
D. Mellitus 13 15 0.78
Chronic pulmonary disease 12 11 0.88
Hypercholesterolemia 12 12 0.75
Smoking history 11 12 1.00
Pharmacotherapy

Aspirin 12 14 0.85
Statins 21 21 0.71
Diuretics 1 -- -
Beta-blockers 14 16 0.69
Nitrates 12 11 0.77
ACEI/ARB 14 16 0.78
Sulfonylureas 11 13 0.49
Biguanides 13 14 0.33
Gliflozins 7 8 0.78
M. injury markers

hs-cTn (ng/L) 1325+ 74 717 £2.38 0.46
BNP (ng/mL) 145 £ 27.6 98 £16.8 0.77

Echocardiographical parameters
LVEF (%) 353+71 55.7 £+ 84* 0.04
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Table 1. Cont.
.. rLVEF pLVEF
Clinical Parameters (n = 25) (0 =27) p-Value
LVGS (%) —21% —18.8 0.66
LA volumen index (mL/m?) 174 +£23* 125+ 15 0.04
LV end-systolic
dimension (mm) 30.1+1.8 293 +19 0.07
LV end-diastolic 41.14+13 437 +£2.1 0.68
dimension (mm)
LV mass index (g/mz) 1163 +7.8* 85.7 +25 0.03
E/A ratio 1.6 £ 0.05 1.4 £+ 0.04 0.22
E/¢’ ratio 6.0 +0.95 6.3 +£0.77 0.45

Values are median (interquartile range) or n (%). * p < 0.05, vs. HFpEE. ACEI = angiotensin-converting enzyme
inhibitors; ARB = angiotensin receptor blocker; LV = left ventricular; hs-cTn, high-sensitivity cardiac troponin;
BNP, B-type natriuretic peptide; M = myocardial; LVGS, left ventricular global strain.

3.4. NLRP3 Inflammasome in Atrial Tissue and Pericardial Fluid

We examined the expression of NLRP3, IL-13, and IL-18 as indicators of sterile inflam-
mation in 20 samples of patients with preoperative HFrEF and HFpEF who were subjected
to CPB (Figure 4). The mRNA levels of NLRP3, IL-1§3, and IL-18 in the HFrEF group were
significantly higher compared to the respective values in the pericardial fluid (Figure 4A-C)
and atrial tissue (Figure 4D-F) of the HFpEF group (p < 0.01).
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Figure 4. Atrial tissue (A-C) and pericardial fluid (D-F) expression of NLRP3, IL-1§3, and IL-18.
Values are means = SEM for pLVEF (n = 27) and rLVEF (n = 25). The black circles are the number of
samples of each group. Significant differences (p < 0.05): * vs. HFpEF.

3.5. Atrial Fibrillation and Oxidative Stress Markers

We compared the redox balance of patients who developed postoperative AF (n = 29)
(55%) with those patients who maintained sinus rhythm (SR) (n = 23); the frequencies
align with values reported in the literature [12,14]. Our analysis revealed no significant
differences in FRAP and MDA between the two groups (Figure 5A,B). However, the plasma
levels of 8-isoprostane were significantly higher in AF patients compared to those in SR
(SR:29.6 £ 4.7 vs. AF: 41.7 £ 7.3; p = 0.03), as were the levels of 3-NT (SR: 422 + 97 vs. AF:
657 + 112; p = 0.03) (Figure 5C,D). These findings were consistent with higher levels of
TBARS (40.8 £ 7.2 vs. 22.7 & 1.9; p = 0.02) (Figure 5E) and 3-NT (706.1 & 33 vs. 481.7 &+ 27;
p = 0.03) (Figure 5F) in atrial tissue of patients who developed AF compared to those who
maintained SR.
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Figure 5. Redox imbalance of patients who developed atrial fibrillation (AF) (n = 29) and who main-
tained sinus rhythm (SR) (n = 23). Plasma antioxidant capacity; (A) FRAP, the ferric reducing ability of
plasma. (B) MDA, malondialdehyde in plasma, (C) 8-isoprostane levels in plasma, (D) nitrotyrosine
in plasma. (E) TBARS in atrial tissue, (F) 3 NT (nitrotyrosine) in atrial tissue. The black circles are the
number of samples of each group. Values are means + SEM. Significant differences (p < 0.05): * vs.
sinus rhythm (SR).

3.6. Immunohistochemistry and Quantification of ROS, Nitrotyrosine, and NLRP3 in
Atrial Biopsies

Next, we have employed confocal microscopy and quantitative immunohistochemistry
to study ROS. Representative confocal images of atrial tissue sections from pAF patients
with rLVEF (Figure 6A,B) and with pLVEF (Figure 6C,D). Dihydroethidium staining for
ROS is shown in red color, left panels. Cardiomyocytes are stained green with F-actin (right
panels). Note that the ROS, nitrotyrosine, and NLRP3 signals in the atrial tissue of patients
with rLVEF are significantly increased compared to patients with pLVEFE.

F-actin Nitrotyrosine F-actin F-actin

FLVEF

NLRP3 (AU)

50

HFrEF  HFpEF HFrEF  HFpEF HFrEF  HFpEF

Figure 6. Representative photo of ROS (red), nitrotyrosine (green) and NLRP3 (green) (A), and respec-
tively quantification (E-G) of images in atrial biopsies from HFrEF (rfLVEF n = 5) and HFpEF (pLVEEF,
n = 7) patients with develop pAF (C) represented ROS, NT and NLRP3 in pLVEF group; F-actin was
labeled either green (B) (rLVEF) or red (D) (pLVEF). Blue was used to stain the nuclei with DAPI. The
graphs represent the quantification of ROS, nitrotyrosine, and NLRP3. Black circles are the samples of
each group. Scale bar (30 um) was added in each image. Significant differences (p < 0.05): * vs. HFrEF.
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4. Discussion

In this study, we found that preoperatively, HFrEF is a clinical factor associated
with a higher systemic and cardiac tissue prooxidant status compared with HFpEF, in
patients undergoing cardiac surgery with CPB. Our approach, which utilizes biochemical
markers in plasma, pericardial fluid, and atrial samples, provides a molecular perspective
that complements the functional findings obtained from echocardiography. Our findings
suggest that oxidative stress and sterile inflammation occurring locally in both groups
could be a mechanism associated with myocardial injury in patients who develop AF.

The association between postoperative AF and oxidative stress has been well docu-
mented from both a clinical and mechanistic point of view [12,38]. The technical procedure
applied in cardiac surgeries can injure myocardial tissue primarily due to changes in perfu-
sion and oxygenation, leading to the formation of ROS [14,39]. Several mechanisms, such
as mitochondrial respiration and neutrophil activation, can generate ROS during cardiopul-
monary bypass [40]. The production of ROS during the early reperfusion phase, combined
with the decrease in antioxidant defenses induced by the IR cycle, makes myocardial tis-
sue extremely vulnerable to oxidative damage [41]. Among these, key species involved
in this mechanism of damage include the superoxide radical (*O; ™), hydroxyl radical
(*OH™), and peroxynitrite (NOO™). These species have been shown to cause damage in
various experimental models and individuals subjected to postinfarction thrombolysis and
stroke [42], percutaneous angioplasty [43], and cardiothoracic surgery [44]. Because cell
membranes are primarily composed of phospholipids and proteins, redox modifications
in these compounds by ROS are essential factors in the induction and consequences of
atrial tissue damage. For instance, lipoperoxidation and the loss of membrane integrity
may lead to a drop in ATP levels and an overload of cytosolic calcium, cellular events that
contribute to cell death and contractile dysfunction [45,46]. In addition, ROS can act as
mediators or messengers, triggering intracellular signals that activate transcription factors
such as NF-kB, leading to the expression of pro-inflammatory genes [47]. Once the inflam-
matory process is initiated, the leukocytes’ transmigration and activation occur, enhancing
local oxidative stress [48,49]. The release of mediators such as cytokines, chemokines,
and adhesion molecules may exacerbate the tissue damage, resulting in focal myocardial
necrosis [9]. Tissue repair involves the risk of collagen deposition in the extracellular matrix,
which can lead to interstitial fibrosis and affect both electrical and mechanical properties
through remodeling [50]. Thus, increases in ROS concentration can affect the contractile
function of cardiomyocytes associated with calcium overload and enhance the sensitivity
of myofilaments as an arrhythmogenic mechanism [51].

Our data demonstrated high levels of oxidative stress-related modifications in proteins,
such as nitrotyrosine residues in plasma and atrial tissue proteins from patients with pre-
operative rLVEF (Figure 2D,E), and those who developed postoperative AF (Figure 4D-F).
We also observed elevated plasma levels of 8-isoprostanes, as an in vivo lipid peroxidation
marker in perioperative samples (Figure 2C). In some animal models of pressure over-
load, a relationship has been described between LV function and oxidative stress levels
in cardiac tissue [52]. In addition, a model of diabetic cardiomyopathy showed similar
ventricular pathological features in hypertrophic cardiomyocytes as those seen in a volume
overload model, illustrating similarities in terms of oxidative effects. Both models exhibited
higher levels of nitrotyrosine in the myocardium of rats [53,54]. Nitrosative stress plays
an important role in the progression of chronic heart failure [54]. Similar to ROS, reactive
nitrogen species (RNS) leads to myocyte apoptosis, direct negative inotropic effects, and
reduced bioavailability of nitric oxide (NO). RNS can cause vasoconstriction in the coronary,
pulmonary, and peripheral vasculature; however, the acute effects on the myocardium have
not been well characterized. Also, the amount of oxidative damage caused by RNS in the
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LV could be similar to that seen in animal models of cardiac IR, which is characterized by
a ROS burst [55-57]. Some mechanisms involved in this injury include the induction of
mitochondrial dysfunction and cell death by apoptosis pathways. Regarding pre-operative
factors and oxidative stress occurrence, cardiometabolic risk factors and hemodynamic
state could influence the pro-oxidant sources (e.g., myeloperoxidase) in leukocytes and
myocardial tissue, similar to IR injury [58].

While most clinical studies and animal models focus on the mechanisms related to
IR injury following cardiac surgery [41,59,60], few studies have investigated the impact
of lower preoperative cardiac function or ventricular remodeling. These factors can be
influenced by the patient’s comorbidities or the degree of structural heart disease before
cardiac surgery [61,62]. For example, research indicates that patients with HFpEF, even in
the absence of cardiovascular signs or symptoms of HF, may exhibit structural changes
in cardiomyocyte morphology and contractile properties similar to those seen in patients
with HFrEF, but with only minimally elevated plasma biomarkers of cardiac injury [63]. In
this view, our findings demonstrate a negative correlation between 3-NT levels in plasma
and atrial tissue with a decrease in LV function across both patient groups (Figure 3A,B).
Additionally, we observed a direct relationship between 3-NT levels in atrial and surgical
blood samples (Figure 3C). Previous studies aimed at testing antioxidant supplementation
before cardiac surgery, found higher 3-NT levels in the atrial tissue of patients who received
placebo treatment and experienced post-operative atrial fibrillation (pAF). In contrast, those
who received combined therapy with omega-3 and antioxidant vitamins exhibited lower
3-NT levels [64]. Furthermore, some protocols analyzing human samples from patients
with valvular disease collected prior to cannulation of the right atrial appendage indicated
significantly elevated 3-nitrotyrosine levels in this clinical context [65]. Therefore, it is
crucial to identify additional markers with mechanistic implications to detect those clinical
cases with a higher risk of progression to structural damage due to pathological remodeling
in patients undergoing CPB.

The role of oxidative stress and inflammation in the postoperative outcomes could
be determined by baseline cardiac function or structural remodeling. Pre-existing car-
diovascular risk factors and technical procedures during surgery can also lead to direct
pro-inflammatory injury to cardiac tissue [41,66]. For example, in patients with pre-existing
cardiac conditions who undergo cardiac bypass or valve replacement surgeries (for stenosis
or severe valvular insufficiency), the extent of left ventricular remodeling or dilation may
contribute to postoperative complications. Abnormalities in myocardial compliance and
deformation, such as alterations in global longitudinal strain, have been associated with
the development of AF following isolated cardiac surgery [67]. Preoperative LA strain has
been linked to the onset of postoperative AF following isolated coronary artery bypass
surgery [22]. Moreover, decreased LV strain rates and wall stress/LV volume index follow-
ing mitral valve repair may determine a contractile dysfunction, even if the pre-surgical
LVEF is above 60% [68]. In this setting, the main factor could be oxidative stress occurrence,
which could cause myofibrillar degeneration [69].

The inflammasome is a crucial component of innate immunity and plays a role in
various pathophysiologic processes. Among them, the NLRP3 inflammasome has been
the most extensively studied, recognizing multiple pathogens through pattern recogni-
tion receptors of the innate immunity system and mediating inflammatory responses via
Caspase-1 activation [11]. Both preclinical and clinical findings support the significant
role of the NLRP3 inflammasome and IL-1 cytokines in the formation, progression, and
complications of atherosclerosis, in ischemic injury (such as acute myocardial infarction),
and in non-ischemic injury to the myocardium (myocarditis), leading to heart failure [70].
Consequently, clinically available IL-1 inhibitors, as well as NLRP3 inflammasome in-
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hibitors currently in clinical development, are of particular interest [71]. Canakinumab, an
IL-1f3 antibody, has been shown to prevent the recurrence of ischemic events in patients
with prior acute myocardial infarction in a large phase III clinical trial, involving 10.061
participants worldwide [72], Ridker et al., 2017. Phase II clinical trials have also yielded
promising results for anakinra, a recombinant IL-1 receptor antagonist, in patients with
ST-segment-elevation acute myocardial infarction or HFrEF [73]. Also, several studies
suggest that NLRP3 inflammasome activation contributes to the onset and development of
AF [74,75].

Concerning atrial detection of ROS and NLRP3, increased oxidative and proinflam-
matory damage may be the mechanistic connection between acute damage events, the
substrate for the occurrence of arrhythmias such as pAF, and the eventual triggers of ven-
tricular remodeling [10,76]. In this issue, our results show that structurally, patients with
HFrEF who develop pAF have higher detection of ROS, nitrotyrosine, and NLRP3 (Figure 6);
therefore, molecular pathways that favor ventricular remodeling in these patients.

While some research has highlighted long-term effects such as ventricular remodeling
events [77,78], the short-term effects related to clinical injury due to IR, such as those seen
in CPB, are still underexplored. Regarding our protocol, higher levels of NLRP3, IL-1beta,
and IL-18 expression were shown in both pericardial fluid and atrial tissue of patients with
HFrEF compared to HFpEF (Figure 4). These data could reveal a certain pathogenetic role
in the occurrence of ventricular failure or a mechanism triggered by the IR cycle and local
ROS burst [10,79]. There is also significant interest in exploring new therapeutic paradigms
that focus on this type of sterile, low-grade inflammation that conditions the progression of
heart failure.

Our pilot study results suggest that oxidative stress may contribute to the dynamics of
ventricular remodeling in patients with HFrEF and HFpEF. These findings are consistent
with the proposals of some clinical studies, where antioxidants were administered to HFrEF
patients, resulting in improved LV function [80,81]. At a molecular level, there is a connec-
tion between antioxidant responses and certain redox-sensitive transcription factors linked
to contractile dysfunction [82]. For instance, the nuclear factor erythroid 2-related factor
2 (Nrf2) serves as a transcriptional regulator known to provide transient cytoprotection
to the myocardium following acute ischemic insults. However, the sustained activation
of Nrf2 may paradoxically cause a reductive environment characterized by excessive an-
tioxidant activity and increased reduced glutathione (GSH) levels [83]. The circulatory
redox state, indicated by the GSH/MDA ratio, has been used to categorize HF patients
into normal redox or hyper-oxidative (HO) groups. Among HF-HO patients, the levels
of antioxidant enzyme proteins, such as superoxide dismutase, glutathione peroxidase,
and catalase, are significantly elevated, while glutathione reductase activity is notably re-
duced [84]. Furthermore, reductions in GSH and ascorbate levels have been associated with
impaired calcium loading in the cytosol in some models of AF [85,86]. Moreover, ascorbate
supplementation can reduce peroxynitrite-mediated injury and mitigate or eliminate the
atrial electrophysiological remodeling linked to these pathophysiological processes [87,88].
Therefore, these findings support the Nrf2/antioxidant response elements (ARE) pathway
as a potential contributor to cardiac antioxidant status and provide novel candidates for
future mechanistic investigations to better understand the relationship between myocardial
OS and the pathophysiology of cardiac IR injury [89,90]. Notably, in our results, the protein
levels of total Nrf2 did not exhibit changes in atrial samples from both groups (Figure 2H).
This could be partly explained by the slow nature of redox-type transcriptional changes,
suggesting that there may not be enough time for an efficient antioxidant response. Evi-
dence of this lack of response is reflected in the absence of changes in plasma antioxidant
capacity (Figure 2A).
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Finally, the association of functional parameters such as LVEF and LVGS (%) with
postoperative outcomes has been the focus of a few short-term studies [91]. In this case,
patients with HFrEF, who have greater tissue damage due to OS, should have worse
outcomes, such as postoperative AF [12,14]. These changes may be even milder in patients
with HFpEE.

The predictive value of ventricular function is crucial for determining the long-term
outcomes of patients undergoing CPB, particularly for those with an LVEF below 30% [92].
LVGS values obtained by speckle tracking echocardiography (STE) can more effectively
detect subclinical changes in patients after CPB [93]. In patients with previous HFpEEF,
changes in LVEF can be subtle and may not be easily identified during the acute phase
or in the postoperative follow-up after CPB [94]. Furthermore, patients with HFpEF
may initially remain asymptomatic despite experiencing subclinical effects on ventricular
function, making detection even more challenging [95]. Regarding the timing of LVGS
assessment for prognostic value in patients undergoing CPB, some studies suggest that
preoperative LVGS values may better predict long-term prognosis [96]. Conversely, there
is evidence to suggest that postoperative LVGS may have greater prognostic value than
preoperative measurements [97]. Therefore, the optimal timing for LVGS evaluation to
enhance its prognostic utility remains unclear, and further prospective studies are needed
to define this aspect more precisely.

Limitations of the Study

Our study had certain limitations. Firstly, we did not conduct a long-term postoper-
ative follow-up to assess the effects over an extended time. Secondly, due to the limited
amount of atrial tissue samples available for biochemical analysis, we were unable to
analyze additional protein markers using Western blot techniques and in AF patients.
However, a previous cross-sectional observational study of coronary patients conducted in
the same hospital and surgical unit revealed low inflammatory and remodeling markers
in patients with preoperative HFpEF after six months of follow-up [89,90]. These clinical
and biochemical findings support the need to explore other markers, such as inflammatory
mediators or remodeling indicators.

5. Conclusions

Increased oxidative and nitrosative stress and elevated NLRP3 inflammasome levels
favor cardiac injury after CPB. Preoperatively, patients with HFrEF showed increased
NLRP3 inflammasome expression in atrial and pericardial fluid samples, suggesting a
potential pharmacologic target to treat clinical complications due to IR damage. In addition,
combining echocardiographic parameters of contractile dysfunction with OS markers could
be helpful for identifying the patients who would benefit from preoperative pharmacologic
therapy with antioxidants. This approach could be used as a strategy to prevent pAF and
other clinical complications related to increased OS in patients with CPB, especially in
patients with preoperative HFrEF.

Supplementary Materials: The following supporting information can be downloaded at: https:
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Abbreviations

The following abbreviations are used in this manuscript:

ARE antioxidants response elements
CPB cardiopulmonary bypass
HFrEF heart failure with reduced ejection fraction

HFpEF heart failure with preserved ejection fraction
FRAP ferric reducing ability of plasma

GSH glutathione

IL-1 interleukin-1

IL-13 interleukin-1 beta

1L-18 interleukin-18

Nrf2 Nuclear factor erythroid 2-related factor 2

NOO- peroxynitrite
NLRP3 NOD-, LRR- and pyrin domain-containing protein 3
NADPH nicotinamide adenine dinucleotide phosphate

3-NT 3-Nitrotyrosine

oS oxidative stress

*OH hydroxyl radical

MO superoxide radical

pAF postoperative atrial fibrillation
ROS reactive oxygen species

TBARS thiobarbituric acid reactive substances
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