
Citation: Gutiérrez-Soto, C.;

Galdames, P.; Palomino, M.A.

An Efficient Probabilistic Algorithm to

Detect Periodic Patterns in

Spatio-Temporal Datasets. Big Data

Cogn. Comput. 2024, 8, 59. https://

doi.org/10.3390/bdcc8060059

Academic Editors: Luca Virgili,

Francesco Cauteruccio and Enrico

Corradini

Received: 18 April 2024

Revised: 20 May 2024

Accepted: 29 May 2024

Published: 3 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and
cognitive computing

Article

An Efficient Probabilistic Algorithm to Detect Periodic Patterns
in Spatio-Temporal Datasets
Claudio Gutiérrez-Soto 1 , Patricio Galdames 2 and Marco A. Palomino 3,*

1 Departamento de Sistemas de Información, Universidad del Bío-Bío, Concepción 4030000, Chile;
cogutier@ubiobio.cl

2 Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Concepción 4090000, Chile;
patricio.galdames@uss.cl

3 School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE, UK
* Correspondence: marco.palomino@abdn.ac.uk

Abstract: Deriving insight from data is a challenging task for researchers and practitioners, especially
when working on spatio-temporal domains. If pattern searching is involved, the complications
introduced by temporal data dimensions create additional obstacles, as traditional data mining
techniques are insufficient to address spatio-temporal databases (STDBs). We hereby present a new
algorithm, which we refer to as F1/FP, and can be described as a probabilistic version of the Minus-F1
algorithm to look for periodic patterns. To the best of our knowledge, no previous work has compared
the most cited algorithms in the literature to look for periodic patterns—namely, Apriori, MS-Apriori,
FP-Growth, Max-Subpattern, and PPA. Thus, we have carried out such comparisons and then evaluated
our algorithm empirically using two datasets, showcasing its ability to handle different types of
periodicity and data distributions. By conducting such a comprehensive comparative analysis, we
have demonstrated that our newly proposed algorithm has a smaller complexity than the existing
alternatives and speeds up the performance regardless of the size of the dataset. We expect our work
to contribute greatly to the mining of astronomical data and the permanently growing online streams
derived from social media.

Keywords: sequential pattern mining; spatio-temporal databases; frequent item sets

1. Introduction

Recent technological developments have led to a data deluge [1], a scenario where more
data are generated than can be successfully and efficiently managed or capped. This results
in missed chances to analyze and interpret data to make informed decisions.

When decision making calls for pattern discovery, the complexity is further expanded
if the data have spatio-temporal features, because traditional algorithms are not meant to
handle the search for correlations which have a time dimension. This is, for example, the
case of global positioning systems [2] and geographic information systems [3], which can be
represented as spatio-temporal databases (STDBs)—that is, extensions to existing information
systems that include time to better describe a dynamic environment [4].

The exploitation of STDBs can provide valuable knowledge, for instance, in the con-
text of road traffic control and monitoring [5], weather analysis [6], and location-based
sociological behavior in social networks [7]. However, as stated above, traditional data
mining techniques cannot be directly applied to STDBs, which complicates not only data
exploitation but also processing times.

We are interested in the discovery of periodic patterns, which can be seen as events
occurring with a certain “periodicity”—for example, the subway’s arrival at Central Park
Station every 15 min defines a periodic pattern. A period corresponds to any unit of time,
such as hours, days, weeks, et cetera. To be precise, a period is the time elapsed between two
occurrences of a pattern, and it can be counted in terms of time or a number of transactions.

Big Data Cogn. Comput. 2024, 8, 59. https://doi.org/10.3390/bdcc8060059 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc8060059
https://doi.org/10.3390/bdcc8060059
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0002-7704-6141
https://orcid.org/0000-0003-3051-2413
https://orcid.org/0000-0001-7850-416X
https://doi.org/10.3390/bdcc8060059
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc8060059?type=check_update&version=1

Big Data Cogn. Comput. 2024, 8, 59 2 of 19

Sequential pattern mining is also concerned with finding statistically relevant patterns
where data appear in a sequence [8]. The sequence is analyzed in such a manner that
the possible patterns satisfy a minimum threshold while considering the length of the
periods to be analyzed. From the point of view of performance, the discovery of valuable
knowledge depends on two aspects: the volume of data and the processing power. Hence,
in a context where data grow exponentially, it is critical to ensure the use of efficient
algorithms, regardless of the available processing power.

Problem Definition

Let o(s′, t) be a spatio-temporal object defined by a point in time t and a spatial location
s′. A change in the shape of the object or in the object’s location is known as an event. We
will denote an event as e(ox, ti), where ox is the object at a location s′m and a time ti. For
simplicity, the space where the objects are located is segmented into a set of n× n disjoint
cells with equal sizes. A cell is denoted as s′m, and a sequence of localized events for the
object ox is denoted as Sx. Events belonging to Sx take place over a time series τ, such as
τ = {t1, . . . , tn}, where ti < ti+1.

Definition 1. Given a minimum support sup(X)min provided by a user, then sup(X) is a p-
periodic pattern if and only if sup(X) ≥ sup(X)min, such that the length of X is p and p corre-
sponds to the period. X is a p-periodic pattern over Sx if it satisfies two user requirements: p and
sup(X)min. To illustrate this, consider the sequence:

Sx = {{a}{b}{c}{a}{d}{c}{a}{e}{c}},

where sup(X)min = 1/3 and p = 3. There are three subsequences, each containing three
events. Thus, it is feasible to obtain the p-periodic pattern {a}{∗}{c}, which corresponds
to a partial periodic pattern, because {∗} can represent any event. This pattern is also a
perfect periodic pattern, as it appears across all three subsequences.

The main contributions of this paper are as follows :

Extensive experimentation: To the best of our knowledge, no previous work has com-
pared, empirically, the performance of the most cited algorithms based on asso-
ciation rules, such as Apriori [9], MS-Apriori [10], FP-Growth [11], PPA [12], and
Max-Subpattern [11]. Thus, we have conducted a comprehensive comparison of these
algorithms over two STDBs—first, a synthetic one, then a real one. As part of our
experiments, we have also included the Minus-F1 algorithm [13], which has been
proven to achieve good results, and a new probabilistic version of it, which we
have developed.

An efficient probabilistic algorithm: Although recent developments have produced sev-
eral off-the-shelf libraries for pattern mining—for instance, apyori [14] is a library
that implements the Apriori algorithm in Python—our experiments have confirmed
that the performance of the most well-known algorithms is not ideal for STDBs. Thus,
we have developed a new, probabilistic version of the Minus-F1 algorithm [13], which
we refer to as F1/FP. This new algorithm allows for periodic pattern discovery in
STDBs. As in the case of Minus-F1, F1/FP is an algorithm of Las Vegas type [15],
which always provides the correct answer when searching for a pattern, and has a
polynomial behavior matched with a better performance in STDBs.

Complexity analysis: A calculation of the complexity of the F1/FP algorithm. The com-
plexities of association rule algorithms have not been discussed sufficiently in the
literature. Indeed, we have struggled to find sources where this kind of analysis is
undertaken. Thus, we have endeavoured to prove that the complexity of our newly
proposed algorithm is better than that of the alternatives.

We expect our work to contribute significantly towards future research on pattern
searching, especially in the case of the exploration of massive datasets—such as those

Big Data Cogn. Comput. 2024, 8, 59 3 of 19

required for the mining of astronomical data—and online streams which continue to grow
uninterruptedly—such as those derived from social media.

The remainder of this paper is organized as follows: Section 2 consists of a bibliographi-
cal review of pattern searching. Section 3 presents the main algorithms based on association
rules, and Section 4 analyzes the complexity of our proposal. Section 5 reports on the
experimental environment and Section 6 introduces our results. Lastly, Section 7 offers our
conclusions and comments on future work.

2. Related Work

There are three types of sequential pattern-mining algorithms: machine learning algo-
rithms, algorithms based on mathematical techniques, and algorithms based on association
rules. Machine learning algorithms require an objective function and a training dataset to
define “correct” patterns [16,17]. This approach often involves a complex model selection
process and hyperparameter tuning, which can be challenging for users who lack sufficient
domain knowledge and experience. Thus, this approach is unsuitable for users who are
not well versed in the intricacies of training and tuning machine learning models.

Algorithms based on mathematical techniques involve the utilization of the Fourier
transform to calculate the circular autocorrelation [18]. This allows customization. For in-
stance, Khanna and Kasurkar [19] addressed three types of periodicity—symbol periodicity,
segment periodicity, and partial periodicity—by proposing corresponding variants of an
algorithm based on autocorrelation. Methods based on mathematics are also robust against
noise and efficient at extracting partial periodic patterns, without additional domain knowl-
edge. Regrettably, they prioritize computational efficiency by employing approximations,
which may miss some periodic patterns [13]. In other words, mathematical methods trade
off the guarantee of finding all the qualifying patterns for faster execution times.

Association rule mining algorithms are those derived from the Apriori-based asso-
ciation rule proposed by Agrawal and Srikant [9]. These algorithms exploit the fact that
“any superset of an infrequent item set is also infrequent”. Indeed, Apriori identifies fre-
quent item sets from smaller to larger candidates by pruning infrequent ones to prevent an
explosion of the number of combinations to be examined.

Even though Apriori remains a well-regarded algorithm [20], it has limitations. First,
it only allows for a single minimum support (MS), which can restrict its scope. Second, its
efficiency may be lacking in certain situations. To address the first drawback, the MS-
Apriori algorithm [10] has been developed to enable the discovery of frequent patterns
across multiple thresholds. To address the second drawback, optimization strategies have
been used to take advantage of the inherent properties of periodic pattern mining [21,22].
For example, it is not necessary to assess the frequency of an item set in position t if
it is not frequent at any position contained within the cycles involving t. Also, other
researchers have looked into algorithms that use properties specific to the types of patterns
they are interested in, for instance, partial periodic patterns [23], asynchronous periodic
patterns [24], symbol periodicity, sequence periodicity, and segment periodicity [25].

Spatio-temporal databases are another area which extends the scope of the problem
with many new applications, such as disease diffusion analysis [26], user activity analy-
sis [27], and local trend discovery in social networks [28,29]. Several approaches have been
proposed to deal with spatial information [30], treating it as a continuous variable [31,32],
formulating it as a dynamic graph mining problem [33], and encoding spatial features as
discrete symbols [13]. We have adopted the discrete symbol encoding approach to fully
exploit our former research on sequential periodic pattern mining [13].

Han et al. [11] proposed the Max-Subpattern Hit-Set algorithm, often referred to
simply as Max-Subpattern. They based their development on a custom data structure
called a max-subpattern tree to efficiently generate larger partial periodic patterns from
combinations of smaller patterns. Yang et al. [12] proposed the projection-based partial
periodic pattern algorithm (PPA), derived from a strategy to encode events in tuples. The
empirical results show that the PPA algorithm is better at discovering partial periodic

Big Data Cogn. Comput. 2024, 8, 59 4 of 19

patterns than Max-Subpattern and Apriori. Han et al. [34] also proposed another algorithm
called partial frequent pattern growth (PFP-Growth).

PFP-Growth has two stages: the first stage constructs an FP-tree, and the second stage
recursively projects the tree to output a complete set of frequent patterns. Experiments
were carried out comparing PFP-Growth with the Max-Subpattern algorithm on synthetic
data. Results show that PFP-Growth performs better than Max-Subpattern.

Then, Gutiérrez-Soto et al. suggested the Minus-F1 algorithm in 2022 [13]. This is
an algorithm designed specifically to search for periodic patterns in STDBs. Gutiérrez-
Soto et al. showed that Minus-F1 has a polynomial behavior, which makes it more ef-
ficient than other alternatives, such as Apriori, Max-Subpattern, and the PPA. Recently,
Gutiérrez-Soto et al. [35] proposed an alternative called HashCycle to find cyclical patterns.
Although highly relevant, HashCycle is not appropriate for periodic pattern discovery.

Xun et al. [36] proposed a new pattern called a relevant partial periodic pattern and its
corresponding mining algorithm (PMMS-Eclat) to effectively reflect and mine the correla-
tions of multi-source time series data. PMMS-Eclat uses an improved version of Eclat to
determine frequent partial periodic patterns and then applies the locality-sensitive hashing
(LSH) principle to capture the correlation among these patterns [37].

Jiang et al. [38] addressed the discovery of periodic frequent travel patterns of indi-
vidual metro passengers considering different time granularities and station attributes.
The authors proposed a new pattern called a “periodic frequent passenger traffic pattern
with time granularities and station attributes” (PFPTS) and developed a complete mining
algorithm with a PFPTS-Tree structure. The proposed algorithm was evaluated on real
smart card data collected by an automatic fare collection system in a large metro network.
As opposed to Jiang et al., our work can be applied in different situations rather than
specifically on individual travellers contexts.

Whilst existing algorithms have been designed to handle various aspects of periodic
pattern mining and spatio-temporal data, they often focus on optimizing computational
efficiency or addressing specific pattern types. In contrast, our work presents a novel
probabilistic variant of the Minus-F1 algorithm that aims to balance efficiency and effec-
tiveness in a wide range of scenarios. The proposed algorithm is exhaustively evaluated
against most of the previously mentioned algorithms using two datasets with diverse
characteristics, showcasing its ability to handle different types of periodicity and data
distributions. By conducting a comprehensive comparative analysis, we will highlight the
unique contributions and advantages of our probabilistic variant of Minus-F1.

3. Algorithms

Sequential pattern mining is concerned with finding statistically relevant data patterns
where the values appear in a sequence [8]. Several algorithms have been designed for
this purpose, and we want to compare our newly suggested alternative with the most
well-regarded options, namely, Apriori, Max-Subpattern, PPA, Minus-F1, and FP-Growth.
We will describe these options below and illustrate our explanations with examples.

3.1. Apriori

Apriori is an algorithm for frequent item mining on relational databases [9]. It identi-
fies items retrieved frequently in a database and creates a set containing such items. Over
time, the set becomes larger, as items continue to be added if they are retrieved often.
These sets can later be used to establish association rules [39], which highlight trends in the
database. Although Apriori is not originally designed to have a temporal dimension, we
have amended it to include it.

Consider the following example. Let us assume that the string below represents a time
series with periodicity four—the periodicity has been determined in advance. Note that
each character in the string represents a separate event, and the events within curly braces
are those that occur simultaneously.

Big Data Cogn. Comput. 2024, 8, 59 5 of 19

a{b, c}ddab{c, d}daabbacbda{b, d}da

Given that the periodicity of the time series is four, we can confirm that the number of
periods is five. We have used hyphens to separate each period in the line below.

a{b, c}dd− ab{c, d}d− aabb− acbd− a{b, d}da

Apriori identifies the sets of frequent items by making subsequent passes through the
database. In the first pass, it gathers the set of frequent items of size 1; then, in the second
pass, the set of frequent items of size 2 and so on.

Let us call Fk the set of frequent items of size k. Then, assuming a minimum support
of 3, F1 can be derived from the following candidates:

F1,Candidates : {a ∗ ∗∗ : 5
5 , ∗a ∗ ∗ : 1

5 , ∗ ∗ ∗a : 1
5

∗b ∗ ∗ : 3
5 , ∗ ∗ b∗ : 2

5 , ∗ ∗ ∗b : 1
5

∗c ∗ ∗ : 2
5 , ∗ ∗ c∗ : 1

5
∗d ∗ ∗ : 1

5 , ∗ ∗ d∗ : 3
5 , ∗ ∗ ∗d : 3

5}
Thus,

F1 =

{
a ∗ ∗∗ :

5
5

, ∗b ∗ ∗ :
3
5

, ∗ ∗ d∗ :
3
5

, ∗ ∗ ∗d :
3
5

}
Subsequently, F2 can be derived from the following candidates,

F2,Candidates : {ab ∗ ∗ : 3
5 , ac ∗ ∗ : 2

5 , a ∗ d∗ : 3
5 , a ∗ ∗d : 3

5 ,
∗bd∗ : 3

5 , ∗b ∗ d : 2
5 , ∗c ∗ d : 2

5 , ∗ ∗ dd : 2
5}

Therefore,

F2 =

{
ab ∗ ∗ :

3
5

, a ∗ d∗ :
3
5

, a ∗ ∗d :
3
5

, ∗bd∗ :
3
5

}
Finally, there is only one candidate for F3,

F3 :
{

abd∗ :
3
5

}
The algorithm finishes when FK = ∅. Then, we finish with F3 in this example, as the

number of events in F3 cannot generate an F4 set.

3.2. Max-Subpattern

Max-Subpattern was originally proposed by Han et al. [11] as an attempt to reduce the
number of sets to determine periodic patterns [40]. It builds as many trees as the number
of periods we encounter in a time series, representing a sequence of events. However,
period 1, which is equivalent to a period formed by a single event, is not taken into
account. If a sequence has size n, the maximum number of periods to evaluate is n

2 . Thus,
Max-Subpattern builds up to n

2 − 1 trees.
Let us call Cmax the root of the tree. Then, for each set of candidates Fk,Candidates, there

is a different Cmax. Also, each level of the tree will have subpatterns. For instance, if Cmax
is formed by four events, the next level in the tree (Level 1) will be formed by four nodes,
and each node will represent a subpattern composed of |Cmax| − 1 events. Then, Level 2 is
formed by nodes with |Cmax| − 2 events whose ancestor belongs to Level 1. Each node is
made up of at least two events, that is, without considering F1. Thus, the maximum height
for each tree is |Cmax| − 1.

Let us consider the same example used for Apriori in Section 3.1. Once F1 has been
determined, Cmax is formed. Hence,

Cmax = abdd

Big Data Cogn. Comput. 2024, 8, 59 6 of 19

Then, we proceed to find subpattern hits, discarding all the matches with only one
non-* element .

HCandidates : {abdd, abdd, a ∗ ∗∗, a ∗ ∗d, abd∗}

Thus, H is formed by:

H = {abdd : 2, a ∗ ∗d : 1, abd∗ : 1}

3.3. PPA

After discovering that Max-Subpattern spends a large amount of time calculating
frequency counts from redundant candidate nodes, Yang et al. [12] developed the projection-
based partial periodic patterns algorithm—abbreviated as PPA—for mining partial periodic
patterns with a specific period length in an event sequence.

The PPA starts by going over the time series which represents the sequence of events
and splits it into partial periods of size l. Afterwards, each event is codified—that is, the
position of each event inside the partial period is recorded. Codified events can be seen
as a matrix, where the first row corresponds to the first codified events and each column
corresponds to the event’s position inside the partial periods. The matrix was referred to
by Yang et al. as an encoded period segment database (EPSD) [12].

By following this approach, it is possible to count the instances of each event by column,
and the result is used to check whether the events comply with the required support.
Consider Apriori’s example defined in Section 3.1. Specifically, consider a particular
instance of the original example for Apriori, namely,

abdd − abdd− aabb− acbd− abda

Consequently, the matrix is defined as follows,

EPSD =

a1 b2 d3 d4
a1 b2 d3 d4
a1 a2 b3 b4
a1 c2 b3 d4
a1 b2 d3 a4

where the element xi corresponds to event x in position i. Once the instances of each event
are counted by column, and the minimum support is satisfied, a candidate subsequence
can be derived. Then, the events that form this subsequence are sorted, considering first
the partial positions and then the lexicographic nomenclature of each event. The last
subsequence Sc is equivalent to F1. Indeed, according to Yang et al. [12], Sc is used to look
for the other Fk,Candidates patterns. Each event of Sc is used as a prefix to obtain the patterns
that comply with the minimum support over the EPSD. Finally, all the Fk sets that fulfil the
minimum support are gathered.

3.4. Minus-F1

Minus-F1 operates by using two counters: one which is increased by 1 every time there
is a match with the candidate pattern, and a second one which decreases until it reaches
zero when the subsequence is consumed. In the first run of the algorithm, the sequence’s
probability distribution is calculated—this can be seen as capturing the entropy of all the
events in the sequence. To achieve this, Minus-F1 finds out how many times each event
occurs. When an event occurs, its counter is decreased. Thus, when the counter reaches
zero, we can confirm that it is unnecessary to keep looking for it—it can no longer occur.

The worst-case scenario for Minus-F1 happens when the events are distributed uni-
formly [13]. In contrast, when the distribution is not uniform, the algorithm performs
the pruning efficiently. To illustrate this, let us consider the following sequence S, which
comprises the subsequences s1 = abc, s2 = abj, s3 = e f g, and s4 = hij, namely,

Big Data Cogn. Comput. 2024, 8, 59 7 of 19

S = {abc− abj− e f g− hij}.

Note that all the subsequences have period 3. Assuming a minimum support of 2, the
only two subsequences Si,j which satisfy the minimum support and form a partial pattern
are S1,1 = a and S1,2 = b. In other words, ab∗ is the only partial pattern.

Once the subsequences s1 and s2 have been consumed, it makes no sense to continue
searching for them—in our example, the events a and b cannot occur in s3 and s4. Hence,
we can prune the search space.

It appears that Minus-F1 is mainly affected by the size of the period [13], as opposed
to the number of patterns found, which is different to the rest of the algorithms reviewed
here. In fact, Minus-F1 goes through the entire sequence of events once for each period
under consideration. Thus, Gutiérrez-Soto et al. [13] have pointed out that Minus-F1’s best
performance is achieved as the minimum support tends to zero. We aimed to fix this issue
in the new algorithm that we are proposing.

3.5. FP-Growth

FP-Growth was designed to derive sets of frequent items from sequences without a
pre-defined period. The algorithm begins by creating a table comprising the frequent items
which satisfy the minimum support. Then, the table is sorted in descending order.

Let us say that the items which satisfy the minimum support are as follows:

caba− cabd− cabc− cabb

Then, FP-Growth removes from the items the segments that do not satisfy the mini-
mum support and separates them to search for partial patterns. Finally, the patterns are
sorted according to the position they have in the original segments. In the case of our
example, the results are displayed in Table 1:

Table 1. Frequent patterns .

Frequent Pattern Order Support

C c*** 100%

A *a** 100%

B **b* 100%

bca cab* 100%

bc c*b* 100%

ba *ab* 100%

ac ca** 100%

3.6. Minus-F1’s (Probabilistic Version)

Our version of Minus-F1, which we have called F1/FP, is a Las Vegas type of algorithm,
which always provides the correct answer. This means that its performance in the worst-
case scenario corresponds to the deterministic algorithm’s performance. Note that this
situation arises only when the probability distribution of the algorithm’s input data reaches
the worst case. Although this is uncommon, it depends on the probability distribution.
Therefore, the time complexities for this type of algorithm are expressed as expected time,
denoted by Θ(f (n)).

F1/FP operates similarly to Minus-F1, except that, when searching for subsequences,
these are selected randomly, assuming their occurrence likelihood follows a uniform distri-
bution. This can be seen in Line 9—the swap procedure—of Algorithm 1, where we have
listed the pseudo-code for F1/FP to illustrate our explanation. This simple modification of
Minus-F1 provides a better performance. It is worth noting that the literature has plenty of
such subtle improvements, which result in better performances and running times.

Big Data Cogn. Comput. 2024, 8, 59 8 of 19

Algorithm 1 Probabilistic Minus-F1

Require: support ≥ 0∧ S ̸= ∅ ∧ n ≥ 0∧m ≥ 0∧ Table[], F1

Ensure: F′ = ∪Fn/2
i=1

1: F′ = F1
2: for i← 1, i ≤ m do
3: for j← 1, j ≤ n

2 do
4: Table[i, j].Cont← 0
5: end for
6: end for
7: for p← 2, p ≤ n

2 do
8: for i← 1, i ≤ n

p do
9: si′ = swap(si, si+1 . . . s n

p
)

10: for j← 1, j ≤ p do
11: m′ ← KeyFunction(si′ ,j)

12: Table[m′, j].Cont ++
13: j← j + 1
14: end for
15: end for
16: for i← 1, i ≤ n

p do
17: for j← 1, j ≤ p do
18: m′ ← KeyFunction(si′ ,j)

19: if Table[m′, j].Cont ≥ support then
20: Fp = Fp ∪ Table[m′, j]
21: Table[m′, j].Cont−−
22: end if
23: end for
24: end for
25: F′ = F′ ∪ Fp
26: end for

4. Time Complexity

To show how random swaps affect the running time, determined by its expected value,
we provide the following definitions:

Definition 2. Let F(s) be a function determining the occurrence of subsequence si within the
sequence S, such that:

F(si) =

{
1 if s occurs at moment ti over S.
0 if s does not occur at moment ti over S.

Definition 3. Let Pr[si] be the probability of choosing some subsequence within sequence S, such
that its position can be between i + 1 and n′, where n′ is the number of sequences to carry out a
swap (n′ = n/p).

We assume that all subsequences have the same probability of being selected—in other
words, a uniform distribution is assumed. Thus, Pr[si] is defined as follows:

Pr[si] =
n′ − i

n′

Definition 4. Given a random subsequence s, whose position within S is i, the expected value to
carry out a swap is defined as :

E[si] =
n

∑
i=i+1

F(s′i)Pr[s′i]

Big Data Cogn. Comput. 2024, 8, 59 9 of 19

Lemma 1. The number of swaps carried out by the probabilistic version of Minus-F1 is given by
the number of subsequences n′ − 1.

Therefore, the time complexity to carry out a swap is given by:

E[S] ≤ Θ(n′)

Proof by Induction: Base case (when n′ = 2): Using the loop invariant in Lines 2–3 in
Algorithm 1, we notice that there is a swap, which is equal to n′ − 1. Note that S has two
events. Then, the random event is chosen from the first event of the sequence. Thus,

E[S] = F(s′2)Pr[s′2] = 1
1
2
= 1

1
n′

Therefore, E[S] ≤ Θ(n′).
Inductive steps: This case is provided when n′ ≥ 3, for any k-iteration from i = 2 until

n′, such that k ≤ n′. Using the loop invariant in lines 2–3, there are always n′ − 1 swaps.
Without loss of generality, it is expressed as

E|S] ≤
F(s′2)Pr[e′2]+

. . . F(s′k)Pr[s′k] + F(s′n)Pr[s′n]

≤ 1
n′ − 2

n′
+ . . . + 1

n′ − k
n′

+ 1
n′ − n′

n′
(by Definitions 2 and 3)

≤ 1
(

0
n′

)
+ . . . + k

(
1
n′

)
+ (n′ − 1)

(
1
n′

)
≤

(n′+1
2)

n′

≤ Θ(n′)

Although our random procedure provides notable improvements in running times, its
time complexity does not change in general. This is because the sequence’s length is n, and
it must run through all subsequences of length n

p over p periods. Consequently, running
all subsequences si takes Θ(n). Without loss of generality, and given that all algorithm
loops operate on subsequences chosen randomly, a portion of this version can be denoted
as Θ(f (n)), instead of using O(f (n)), except for the loops between lines 2 and 8—note that
these loops are related to m events. Thus, since Minus-F1’s time complexity is O(mn2); this
probabilistic version can be characterized as Θ(mn2), which is bounded by O(mn2).

5. Experimentation

To check the algorithms’ performance, two datasets were used. The first one is
composed of synthetic data, and it was used to corroborate that each algorithm was
implemented correctly—that is, to confirm that each algorithm was able to find the required
patterns. Once correctness had been verified, we used a second dataset to confirm that
the algorithms could handle real data. The second dataset is a sample of the Geolife GPS
trajectory dataset [41].

Geolife records a broad range of users’ outdoor movements, including daily routines—
going to work or returning home—and activities like travelling to entertainment, shopping,
and sport activities [41]. Geolife has been widely used in mobility pattern mining and
location-based social networks [26], which are potential applications for our work. There-
fore, we thought this dataset would fit our experimentation adequately.

The Geolife dataset comprises GPS trajectories undertaken by 182 people over a period
of three years—between April 2007 and August 2012—and it was collected by Microsoft
Research Asia. Each GPS trajectory is represented by a sequence of time-stamped points
labelled by latitude, longitude, and altitude.

Big Data Cogn. Comput. 2024, 8, 59 10 of 19

To characterize Geolife as an STDB for our experiments, the space was represented by
a set of cells forming a grid. The location of each object within the grid was determined
by its latitude and longitude. Time was modelled as a timestamp. At timestamp 0, all
the objects are situated in their initial positions. Subsequently, objects move to different
positions across the grid. An object’s motion was characterized as a contiguous sequence
of characters, facilitating pattern searching within the sequence.

It should be observed that our representation of motion can have an impact on pattern
detection only if movement occurs within a time window whose granularity is smaller than
what has been represented. For instance, if we were measuring time in minutes, we could
lose some patterns occurring within seconds. However, this is not the case. The efficiency
of the algorithms considered here does not depend on the granularity of the grid, but on
the length of the sequence.

The results displayed below correspond to the average of five executions for each ex-
periment. From an empirical perspective, the performance of each algorithm is determined
by its running time. To define a pattern, a range of 2 to n

2 events was considered, where n
represents the length of the sequence. This implies that all patterns consist of at least two
events—at least one event repetition—occurring up to half the length of the sequence. For
a pattern to be valid, it must occur at least twice within the sequence.

All experiments were limited to a maximum of 3 h—results exceeding this length are
not shown. The experiments were carried out on a server equipped with an Intel Xeon
Processor E3-1220 at 3.00 GHz and 16 GB of RAM operating at 2133 MHz with a 1 TB
7200 RPM hard drive, and running under Linux (Debian Jessie 8.4). Table 2 displays the
abbreviations used later in our results to refer to the different algorithms.

Table 2. Algorithm abbreviations.

Acronym Meaning

APR Apriori algorithm

MSA MS-Apriori algorithm

M-SP Max-Subpattern algorithm

PPA PPA algorithm

FP-G FP-Growth algorithm

F1/FP Our probabilistic version of Minus-F1

F1 Minus-F1 algorithm

5.1. Results Derived from the Synthetic Dataset

The experiments contemplated sequences of size 500, 750 and 1000, considering
periods of 4, 8, 16, and 20. To link the running times with the corresponding computational
complexities for each algorithm, two experiments were performed. The experiments cover
pattern searching over the synthetic database which has a full pattern with period 48 and is
repeated until achieving the sequence size. Supports for 25% (Tables 3–5), 50% (Tables 6–8),
and 75% (Tables 9–11) were considered.

Table 3. Processing time (ms) for each algorithm using 500 sequences with a minimum support of
25% over synthetic data.

Algorithm APR M-SP MSA PPA FP-G F1/FP F1

Period

4 42 483 11 12 7 5 6

8 155 680 36 32 8 5 13

12 1.9 × 104 932 3.4 × 104 3.2 × 104 3.3 × 103 6 23

16 2.9 × 107 1.3 × 103 2.3 × 107 9.4 × 106 1.9 × 106 6 38

20 5.8 × 107 1.9 × 103 180 1.0 × 106 11 10 53

Big Data Cogn. Comput. 2024, 8, 59 11 of 19

Table 4. Processing time (ms) for each algorithm using 750 sequences with a minimum support of
25% over synthetic data.

Algorithm APR M-SP MSA PPA FP-G F1/FP F1

Period

4 50 1.3 × 103 16 16 8 6 8

8 184 1.6 × 103 52 32 9 6 18

12 2.1 × 104 2.1 × 103 3.5 × 104 4.9 × 104 3.2 × 103 6 32

16 3.0 × 107 2.9 × 103 2.3 × 107 1.4 × 107 1.8 × 106 8 51

20 5.1 × 107 3.8 × 103 239 1.5 × 106 13 12 77

Table 5. Processing time (ms) for each algorithm using 1000 sequences with a minimum support of
25% over synthetic data.

Algorithm APR M-SP MSA PPA FP-G F1/FP F1

Period

4 86 2.9 × 103 21 16 11 6 10

8 220 3.0 × 103 68 57 11 7 22

12 2.1 × 104 4.1 × 103 3.7 × 104 6.6 × 104 3.2 × 103 8 41

16 2.7 × 107 5.2 × 103 2.3 × 107 1.9 × 107 1.8 × 106 9 67

20 5.8 × 107 6.7 × 103 305 2.1 × 105 16 14 98

Table 6. Processing time (ms) for each algorithm using 500 sequences with a minimum support of
50% over synthetic data.

Algorithm APR M-SP MSA PPA FP-G F1/FP F1

Period

4 13 435 2 3 6 3 5

8 62 408 3 3 5 4 10

12 1.5 × 103 464 1.0 × 104 8.8 × 103 1.6 × 103 5 18

16 1.6 × 103 446 49 32 6 6 28

20 1.7 × 103 542 6 6 7 6 42

Table 7. Processing time (ms) for each algorithm using 750 sequences with a minimum support of
50% over synthetic data.

Algorithm APR M-SP MSA PPA FP-G F1/FP F1

Period

4 13 1.2 × 103 3 3 7 4 6

8 73 1.2 × 103 4 3 7 4 18

12 1.8 × 103 1.3 × 103 1.1 × 104 1.3 × 104 1.6 × 103 6 24

16 1.9 × 103 1.2 × 103 70 45 8 8 38

20 2.1 × 103 1.3 × 103 7 6 9 8 60

Table 8. Processing Time (ms) for each algorithm using 1000 sequences with a minimum support of
50% over synthetic data.

Algorithm APR M-SP MSA PPA FP-G F1/FP F1

Period

4 16 2.6 × 103 4 4 10 4 7

8 81 2.8 × 103 5 5 8 5 17

12 2.1 × 103 2.8 × 103 1.2 × 104 1.7 × 104 1.6 × 103 7 30

16 2.2 × 103 2.9 × 103 93 60 9 8 49

20 2.5 × 103 3.0 × 103 9 8 10 9 78

Big Data Cogn. Comput. 2024, 8, 59 12 of 19

Table 9. Processing time (ms) for each algorithm using 500 sequences with a minimum support of
75% over synthetic data.

Algorithm APR M-SP MSA PPA FP-G F1/FP F1

Period

4 13 434 2 3 5 2 5

8 25 440 3 3 6 3 10

12 38 434 4 3 6 3 17

16 58 449 5 4 6 5 26

20 74 454 6 6 7 6 38

Table 10. Processing time (ms) for each algorithm using 750 sequences with a minimum support of
75% over synthetic data.

Algorithm APR M-SP MSA PPA FP-G F1/FP F1

Period

4 14 1.2 × 103 4 3 7 4 6

8 32 1.2 × 103 5 4 8 4 13

12 43 1.2 × 103 5 4 6 4 23

16 59 1.2 × 103 7 5 6 5 35

20 86 1.3 × 103 8 6 8 7 52

Table 11. Processing time (ms) for each algorithm using 1000 sequences with a minimum support of
75% over synthetic data.

Algorithm APR M-SP MSA PPA FP-G F1/FP F1

Period

4 17 2.9 × 103 5 4 9 4 6

8 36 2.7 × 103 6 5 8 4 16

12 51 2.8 × 103 7 5 6 5 27

16 71 2.7 × 103 9 6 7 6 44

20 97 2.8 × 103 10 8 10 8 71

5.2. Results Derived from the Geolife Dataset

We chose data samples from three Geolife users—Users 0, 1, and 2—and we re-
viewed these samples manually to confirm the presence of periodic patterns. Different
size sequences—500, 750, and 1000—and periods—10, 15, 25, 50, and 100—were consid-
ered. The 500 dataset was built from User 0’s records, the 750 dataset was built from
User 1’s records, and the 1000 dataset was built from User 2’s records. Supports for 25%
(Tables 12–14), 50% (Tables 15–17), and 75% (Tables 18–20) were considered.

Table 12. Processing time (ms) for each algorithm using 500 sequences with a minimum support of
25% over real data.

Algorithm APR M-SP MSA PPA FP-G F1/FP F1

Period

10 55 433 7 8 11 7 47

15 93 465 8 9 11 8 59

25 1.3 × 103 620 2.3 × 103 9.4 × 105 16 21 153

50 - 4.6 × 103 - - 1305 27 614

100 - 2.7 × 104 - - - 35 1.4 × 103

Big Data Cogn. Comput. 2024, 8, 59 13 of 19

Table 13. Processing time (ms) for each algorithm using 750 sequences with a minimum support of
25% over real data.

Algorithm APR M-SP MSA PPA FP-G F1/FP F1

Period

10 91 1.2 × 103 14 14 17 12 47

15 146 1.2 × 103 16 18 21 15 93

25 342 1.3 × 103 66 22 23 35 207

50 3.2 × 104 1.8 × 103 1.1 × 105 8.6 × 105 1.6 × 103 56 670

100 - 2.9 × 104 - - 6.9 × 105 80 1.7 × 103

Table 14. Processing time (ms) for each algorithm using 1000 sequences with a minimum support of
25% over real data.

Algorithm APR M-SP MSA PPA FP-G F1/FP F1

Period

10 93 2.8 × 103 17 17 21 15 57

15 148 2.9 × 103 18 23 27 20 120

25 346 3.0 × 103 25 28 34 33 304

50 - 4.1 × 103 - - 48 75 1.0 × 103

100 - 2.0 × 104 - - - 94 2.4 × 103

Table 15. Processing time (ms) for each algorithm using 500 sequences with a minimum support of
50% over synthetic data.

Algorithm APR M-SP MSA PPA FP-G F1/FP F1

Period

10 54 450 7 9 10 7 31

15 92 467 8 10 11 8 57

25 189 496 10 12 13 12 122

50 956 624 29 15 14 27 243

100 - 1.9 × 103 - - - 35 940

Table 16. Processing time (ms) for each algorithm using 750 sequences with a minimum support of
50% over synthetic data.

Algorithm APR M-SP MSA PPA FP-G F1/FP F1

Period

10 90 1.1 × 103 15 14 17 11 47

15 143 1.2 × 103 17 17 20 15 93

25 339 1.3 × 103 21 21 23 19 196

50 1.7 × 103 1.8 × 103 36 27 31 31 613

100 1.4 × 104 2.6 × 103 60 31 40 52 1.6 × 103

Table 17. Processing time (ms) for each algorithm using 1000 sequences with a minimum support of
50% over synthetic data.

Algorithm APR M-SP MSA PPA FP-G F1/FP F1

Period

10 93 2.7 × 103 16 17 22 14 56

15 147 2.8 × 103 20 23 28 20 120

25 344 2.9 × 103 25 28 34 32 303

50 1.5 × 103 3.2 × 103 40 31 38 46 640

100 - 4.5 × 103 - - 51 94 1.5 × 103

Big Data Cogn. Comput. 2024, 8, 59 14 of 19

Table 18. Processing time (ms) for each algorithm using 500 sequences with a minimum support of
75% over synthetic data.

Algorithm APR M-SP MSA PPA FP-G F1/FP F1

Period

10 55 430 7 8 11 7 31

15 93 471 8 9 11 8 54

25 182 494 10 13 13 12 118

50 766 593 15 15 15 15 187

100 - 1.1 × 103 - - 7.0 × 103 35 573

Table 19. Processing time (ms) for each algorithm using 750 sequences with a minimum support of
75% over synthetic data.

Algorithm APR M-SP MSA PPA FP-G F1/FP F1

Period

10 88 1.1 × 103 14 14 17 12 47

15 142 1.2 × 103 17 17 20 15 93

25 337 1.3 × 103 21 21 23 20 196

50 1.6 × 103 1.6 × 103 35 27 31 31 301

100 1.2 × 104 2.5 × 103 60 30 40 51 1.4 × 103

Table 20. Processing time (ms) for each algorithm using 1000 sequences with a minimum support of
75% over synthetic data.

Algorithm APR M-SP MSA PPA FP-G F1/FP F1

Period

10 92 2.7 × 103 16 17 22 15 56

15 142 2.8 × 103 20 24 27 20 122

25 343 2.9 × 103 25 28 35 32 302

50 1.5 × 103 3.1 × 103 40 32 37 45 551

100 1.3 × 104 4.1 × 103 70 34 39 56 1.3 × 103

6. Discussion

As mentioned previously, timestamped data on the grid are mapped to a character
string representing a sequence. All the algorithms which we have included in our research
operate on such sequences, and both their performance and scalability depend solely on the
sequence’s length and the minimum support. Our results are independent of the size of the
grid and the configuration of its cells. Thus, the impact of the mapping is not considered
here. There is, on the other hand, a separate body of research that studies indexing and
searching methods in spatio-temporal databases. These works are based on indexing
structures such as the r-tree and its variants [42], namely, HR-tree and MVR-tree to mention
a couple. Given that such works depend on these structures, it is not possible to compare
them directly with the association rule algorithms that we have described here.

6.1. Synthetic Data Results

Tables 3–5 show the experimental results over the synthetic STDB. In these tables, the
minimum support was set to 25%. The sequence length in Table 3 is 500, in Table 4 is 750,
and in Table 5 is 1000.

Even though our experiments were limited to a maximum of three hours, they shed
light on the algorithms’ performance. In Table 3, the best results for average processing
time are provided by F1/FP (6.4 ms), followed by F1 (26.6 ms), M-SP, FP-G, and PPA. The
first results are in line with the standard deviation presented by the first two algorithms—
1.85 for F1/FP and 17.02 for F1. The worst results were by APR and MSA. These two
algorithms also had the worst standard deviations—2.32 × 107 for APR with an average
time of 1.74 × 107 ms, and 9.20 × 106 for MSA with an average time of 9.20 × 106 ms.

Big Data Cogn. Comput. 2024, 8, 59 15 of 19

Table 4 reflects the same behavior as Table 3, maintaining the same order of less and
more efficient algorithms in terms of processing time. According to Table 5, it is possible to
see the same performance trend for both the least and most efficient algorithms. Whenever
the sequence length was increased in Tables 3 and 4, the processing times also increased for
all the algorithms.

Tables 6–8 present the results considering a minimum support of 50%. In Table 6 the
sequence length is 500, whereas in Table 7 is 750, and in Table 8 is 1000. In Table 6, the worst
performance is by MSA, with an average time of 1.0 × 104 ms and a standard deviation
of 3.99 × 103, followed by PPA, whose average time was 1.77 × 103 ms with a standard
deviation of 3.52 × 103. Conversely, the best times are provided by F1/FP and F1. F1/FP
has an average of 4.8 ms and a standard deviation of 1.16, while F1 has an average of
20.6 ms with a standard deviation of 13.23.

Table 7 exhibits the same behavior as Table 6—that is, the same order of performance
for the two most efficient and the two least efficient algorithms. The worst average time in
Table 8 was recorded by PPA (2.82 × 103 ms), while its standard deviation was 6.79 × 103.
The second worst average—2.82 × 103—was recorded by M-SP, while the second worst
standard deviation—4.79 × 103—was presented by MSA.

It is worth noting that the PPA is particularly affected when the period is 12 in
Tables 6–8, as both its average time and standard deviations increase. However, the PPA
is not the only one affected. All algorithms are impacted negatively by the same period,
except for F1/FP and F1. This peculiarity with period 12 could be attributed to how the
pattern is formed, as both AP and MSA are not affected as much as the PPA. Following
the same trend observed in Tables 3–5, the best average time along with the best standard
deviation is yielded by F1/FP and F1.

Tables 9–11 display the results considering a minimum support of 75%, with sequences
of lengths 500 (Table 9), 750 (Table 10), and 1000 (Table 11). In Table 9, the worst average
time was yielded by M-SP with 442.2 ms, while the second worst was from APR—41.6 ms
with a standard deviation of 24.62. Remarkably, the standard deviation for F1 (13.141) was
the second worst. The most efficient algorithm was the PPA, with an average of 3.8 ms and
a standard deviation of 1.30. The second most efficient one was MSA, whose average time
was 4 ms. Note that FP-G registered the lowest standard deviation, with a value of 0.707.

As in the case of Table 9, the less efficient algorithms in Table 10 are M-SP, with an
average of 1.22 × 103 ms, and a standard deviation of 44.7. APR presents an average time
of 46.8 ms with a standard deviation of 27.36. FP-G exhibits the lowest standard deviation,
and the PPA proves to be the most efficient with an average of 4.4 ms and the second-lowest
standard deviation of 1.14. F1/FP offers the second-best average—that is, 4.8 ms—and the
third-best standard deviation of 1.30. Notably, F1 continues to have better time average
and standard deviation than APR and M-SP.

Finally, Table 11 shows the same trend as Tables 9 and 10. The highest standard
deviation was displayed by M-SP at 2.78 × 103, and the lowest time average was exhibited
by F1/FP at 5.4 ms, followed by the PPA at 5.6 ms. Note that F1/FP presents a high
standard deviation, though it is negligible in comparison with the PPA, and F1 has better
averages than M-SP and APR.

To summarise, from this set of experiments, we can appreciate that every time the
sequence length is increased, the processing time also increases. In addition, whenever
the support is raised, all algorithms tend to reduce their average time and their standard
deviation, which implies lower processing times for each of them. PPA, MS-P, and FP-G
greatly benefit from the minimum support being increased. On the other hand, F1/FP and
F1 exhibit a scalable performance that is independent of both increments, the minimum
support and the sequence length. This is particularly notable in comparison with the
performance of the other algorithms, especially when the support is low.

Big Data Cogn. Comput. 2024, 8, 59 16 of 19

6.2. Real Data Results

Tables 12–14 display experimental results on the real dataset. In these three tables, the
minimum support was set to 25%. Specifically, the sequence lengths are 500, 750, and 100,
respectively, for each table. In Table 12, three algorithms exceed the maximum of three
hours, particularly when the periods are 50 and 100. These algorithms correspond to APR,
MSA, and PPA, which present the highest averages for time along with their corresponding
standard deviations—that is, replacing “-” with three hours in milliseconds. According
to the results of this table, the most efficient algorithms are F1/FP with an average of
19.6 ms and F1 with 454 ms. Their standard deviations were 12.11 and 577.23, respectively.
Table 13 exhibits the same behavior as Table 12, maintaining the same positions for the
least efficient algorithms in terms of running time, particularly when the period is 100.
Following the same pattern as Table 12, F1/FP and F1 had the lowest averages and standard
deviations. Continuing this trend, Table 14 provides the same rankings for the best and
worst averages along with their standard deviations.

Four algorithms—APR, MSA, PPA, and FP-G—exceeded the time limit in Table 15.
These four algorithms yielded the highest standard deviations. Conversely, the lowest av-
erages and standard deviations corresponded to F1/FP and F1. No algorithm exceeded the
time limit in Table 16. However, the highest averages were provided by APR (3.25 × 103 ms
with a standard deviation of 6.04 × 103), followed by M-SP with an average of 1.60 × 103

and a standard deviation of 6.20 × 102.
Two algorithms obtained the lowest averages: PPA with 22 ms and a standard devi-

ation of 7, followed by F1/FP with 25.6 ms. As for Table 17, three algorithms exceeded
the time limit—APR, MSA, and PPA—when the period was 100. Also, note that these
algorithms presented the highest standard deviations. The algorithm with the lowest
average was FP-G—34 ms with a standard deviation of 10.99—followed by F1/FP—41.2 ms
and a standard deviation of 31.956.

Table 18 is no exception to the fact that some algorithms exceeded the time limit, such as
APR, MSA, and PPA, specifically when the period was 100. The lowest averages were given
by F1/FP—15.4 ms with a standard deviation of 11.41—and F1—192.6 ms with a standard
deviation of 221.14. As for Table 19, no algorithm exceeded 3 h of processing. The highest
average times were given by APR with 2.83× 103 ms and a standard deviation of 5.16 × 103.
The second-highest times corresponded to M-SP with an average of 1.54 × 103 ms and a
standard deviation of 568.33.

Finally, Table 20 shows that no algorithms exceeded the maximum time limit. The
lowest average time was provided by PPA—27 ms with a standard deviation of 6.782 . The
second best average time was for FP-G—32 ms with a standard deviation of 7.211.

Just as it happened with the synthetic dataset, every time the support was increased
in the real dataset, the running times decreased, except for F1/FP and F1. Similarly, when
the sequence length was increased, the running times also increased.

At first glance, the running times are higher on the real dataset than on the synthetic
one. However, for both datasets, the running times decreased for the algorithms using
minimum support every time the minimum support increased. F1/FP always showed
remarkable running times. Indeed, this algorithm was always among the best ones. Inci-
dentally, when the minimum support was increased, PPA and MS-P also achieved good
results on the real dataset.

7. Conclusions

Mining periodic patterns became a topic of relevance in the 1990s, mostly after the
development of the Apriori algorithm. Since then, the discovery of patterns has turned
out to be one of the main techniques for characterizing data. Over the years, several
improvements to the basic Apriori idea have been considered, focusing on larger and
larger datasets as time has progressed, increasingly stressing the storage and processing
capabilities of modern computers.

Big Data Cogn. Comput. 2024, 8, 59 17 of 19

In this paper, we have presented F1/FP, a new probabilistic algorithm, which is
guaranteed to find all the periodic patterns—it always returns the correct answer, as any
Las Vegas algorithm. F1/FP does not require minimum support and is scalable.

Given that no previous work has compared the performance of the most well-regarded
algorithms in this field, we endeavored to compare them through extensive experimen-
tation, involving sequences of different lengths and various support thresholds. This
has enabled us to gain a broader understanding of the performance of the most relevant
algorithms, and we have confirmed that our proposal performs better than the existing
alternatives. Our experiments allow us to derive the following observations :

F1/FP Performance: F1/FP has a robust performance not only on synthetic data but also
on real data. F1/FP provides the best average results compared to all the other
algorithms included in our study.

Apriori: The Apriori algorithm achieves the worst results for synthetic and real datasets.

PPA: When support is increased for real data, the PPA has a reasonably good performance.
When support is low and data are synthetic, the PPA is not ideal.

MS-Apriori: The performance of MS-Apriori is remarkably good on synthetic data.

FP-Growth The FP-Growth algorithm achieves a better performance than the PPA when
support is increased.

Minimum support: Every time the minimum support is increased, all algorithms accom-
plish better processing times.

Performance on real data: Broadly speaking, all algorithms increase their average times
when using real data.

Future Work

Although F1/FP always returns the correct answer and is scalable, we must continue
to work on its runtime execution to ensure that it is as fast as possible. To improve the
runtime in future research, we plan to exploit parallelism, including what we can obtain
through a MapReduce formulation [43].

We also want to consider an extension of our work to manage continuous online
streams. While our algorithm is guaranteed to handle such a challenge, it would be an
interesting case study to utilize it to detect and classify events in real time as they are
retrieved from social media and astronomical data streams.

Author Contributions: Conceptualization, C.G.-S.; methodology, C.G.-S.; software, C.G.-S.; valida-
tion, C.G.-S., P.G. and M.A.P.; formal analysis, C.G.-S.; investigation, C.G.-S., P.G. and M.A.P.; data
curation, C.G.-S.; writing—original draft preparation, C.G.-S., P.G. and M.A.P.; writing—review and
editing, M.A.P.; funding acquisition, C.G.-S. and M.A.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was partially funded by Universidad del Bío-Bío, Chile, under grant INN
I+D 23-53. Marco Palomino acknowledges the support provided by the University of Aberdeen to
support his work on this publication.

Data Availability Statement: Restrictions apply to the availability of the data employed as part of our
investigation. Data were obtained from the Geolife project (Microsoft Research Asia) and are available
at https://www.microsoft.com/en-us/download/details.aspx?id=52367 (accessed on 28 May 2024)
with the permission of Microsoft Research Asia.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Frederick, D.E. Librarians in the Era of Artificial Intelligence and the Data Deluge. Libr. Tech News 2020, 37, 1–7. [CrossRef]
2. Li, X.; Chen, W.; Chan, C.; Li, B.; Song, X. Multi-Sensor Fusion Methodology for Enhanced Land Vehicle Positioning. Inf. Fusion

2019, 46, 51–62. [CrossRef]

https://www.microsoft.com/en-us/download/details.aspx?id=52367
http://doi.org/10.1108/LHTN-03-2020-0029
http://dx.doi.org/10.1016/j.inffus.2018.04.006

Big Data Cogn. Comput. 2024, 8, 59 18 of 19

3. Lü, G.; Batty, M.; Strobl, J.; Lin, H.; Zhu, A.X.; Chen, M. Reflections and Speculations on the Progress in Geographic Information
Systems (GIS): A Geographic Perspective. Int. J. Geogr. Inf. Sci. 2019, 2, 346–367. [CrossRef]

4. Nandal, R. Spatio-Temporal Database and its Models: A Review. IOSR J. Comput. Eng. 2013, 11, 91–100. [CrossRef]
5. Alhaek, F.; Liang, W.; Rajeh, T.M.; Javed, M.H.; Li, T. Learning Spatial Patterns and Temporal Dependencies for Traffic Accident

Severity Prediction: A Deep Learning Approach. Knowl. Based Syst. 2024, 286, 111406. [CrossRef]
6. Ireland, L.G.; Robbins, J.; Neal, R.; Barciela, R.; Gilbert, R. Generating Weather Pattern Definitions over South Africa Suitable for

Future Use in Impact-Orientated Medium-Range Forecasting. Int. J. Climatol. 2024, 44 , 1513–1529. [CrossRef]
7. Nezhadettehad, A.; Zaslavsky, A.; Abdur, R.; Shaikh, S.A.; Loke, S.W.; Huang, G.L.; Hassani, A. Predicting Next Useful Location

with Context-Awareness: The State-of-the-Art. arXiv 2024. [CrossRef]
8. Bechini, A.; Bondielli, A.; Dell’Oglio, P.; Marcelloni, F. From Basic Approaches to Novel Challenges and Applications in Sequential

Pattern Mining. Appl. Comput. Intell. 2023, 3, 44–78. [CrossRef]
9. Agrawal, R.; Srikant, R. Fast Algorithms for Mining Association Rules. In Proceedings of the 20th International Conference on

Very Large Data Bases (VLDB), Santiago, Chile, 12–15 September 1994; Volume 1215, pp. 487–499.
10. Liu, B.; Hsu, W.; Ma, Y. Mining Association Rules with Multiple Minimum Supports. In Proceedings of the 5th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 15–18 August 1999; pp. 337–341.
11. Han, J.; Dong, G.; Yin, Y. Efficient Mining of Partial Periodic Patterns in Time Series Database. In Proceedings of the 15th

International Conference on Data Engineering (Cat. No. 99CB36337), Sydney, NSW, Australia, 23–26 March 1999; IEEE: Piscataway,
NJ, USA , 1999; pp. 106–115.

12. Yang, K.J.; Hong, T.P.; Chen, Y.M.; Lan, G.C. Projection-based Partial Periodic Pattern Mining for Event Sequences. Expert Syst.
Appl. 2013, 40, 4232–4240. [CrossRef]

13. Gutiérrez-Soto, C.; Gutiérrez-Bunster, T.; Fuentes, G. A New and Efficient Algorithm to Look for Periodic Patterns on Spatio-
Temporal Databases. J. Intell. Fuzzy Syst. 2022, 42, 4563–4572. [CrossRef]

14. Mochizuki, Y. apyori 1.1.2. 2019. Available online: https://pypi.org/project/apyori/ (accessed on 18 May 2024).
15. Clarkson, K.L. Las Vegas Algorithms for Linear and Integer Programming when the Dimension is Small. J. ACM 1995, 42, 488–499.

[CrossRef]
16. Jamshed, A.; Mallick, B.; Kumar, P. Deep Learning-Based Sequential Pattern Mining for Progressive Database. Soft Comput. 2020,

24, 17233–17246. [CrossRef]
17. Bunker, R.; Fujii, K.; Hanada, H.; Takeuchi, I. Supervised Sequential Pattern Mining of Event Sequences in Sport to Identify

Important Patterns of Play: An Application to Rugby Union. PLoS ONE 2021, 16, e0256329. [CrossRef]
18. Parthasarathy, S.; Mehta, S.; Srinivasan, S. Robust Periodicity Detection Algorithms. In Proceedings of the 15th ACM International

Conference on Information and Knowledge Management, Arlington, VA, USA, 6–11 November 2006; pp. 874–875.
19. Khanna, S.; Kasurkar, S. Design & Implementation of Efficient Periodicity Mining Technique for Time Series Data. Int. J. Adv. Res.

Comput. Commun. Eng. 2015, 4, 439–444. Available online: https://www.ijarcce.com/upload/2015/may-15/IJARCCE%2095.pdf
(accessed on 18 May 2024).

20. Tirumalasetty, S.; Jadda, A.; Edara, S.R. An Enhanced Apriori Algorithm for Discovering Frequent Patterns with Optimal Number
of Scans. arXiv 2015. [CrossRef]

21. Ozden, B.; Ramaswamy, S.; Silberschatz, A. Cyclic Association Rules. In Proceedings of the 14th International Conference on
Data Engineering, Orlando, FL, USA, 23–27 February 1998; IEEE: Piscataway, NJ, USA, 1998; pp. 412–421.

22. Samoliya, M.; Tiwari, A. On the Use of Rough Set Theory for Mining Periodic Frequent Patterns. Int. J. Inf. Technol. Comput. Sci.
2016, 8, 53–60. [CrossRef]

23. Kiran, R.U.; Venkatesh, J.; Toyoda, M.; Kitsuregawa, M.; Reddy, P.K. Discovering Partial Periodic-Frequent Patterns in a
Transactional Database. J. Syst. Softw. 2017, 125, 170–182. [CrossRef]

24. Huang, K.Y.; Chang, C.H. SMCA: A General Model for Mining Asynchronous Periodic Patterns in Temporal Databases. IEEE
Trans. Knowl. Data Eng. 2005, 17, 774–785. [CrossRef]

25. Hatkar, S.P.; Kadam, S.; Syed, A. Analysis of Various Periodicity Detection Algorithms in Time Series Data with Design of New
Algorithm. Int. J. Comput. Appl. Technol. Res. 2014, 3, 229–239. [CrossRef]

26. Gao, Y.; Wang, S.; Padmanabhan, A.; Yin, J.; Cao, G. Mapping spatiotemporal patterns of events using social media: A case study
of influenza trends. Int. J. Geogr. Inf. Sci. 2018, 32, 425–449. [CrossRef]

27. Lv, M.; Chen, L.; Chen, G. Mining User Similarity Based on Routine Activities. Inf. Sci. 2013, 236, 17–32. [CrossRef]
28. Ishida, K. Periodic Topic Mining from Massive Amounts of Data. In Proceedings of the 2010 International Conference on

Technologies and Applications of Artificial Intelligence, Hsinchu, Taiwan, 18–20 November 2010; IEEE: Piscataway, NJ, USA,
2010; pp. 379–386.

29. Cheng, T.; Wicks, T. Event Detection Using Twitter: A Spatio-Temporal Approach. PLoS ONE 2014, 9, e97807. [CrossRef]
[PubMed]

30. Atluri, G.; Karpatne, A.; Kumar, V. Spatio-Temporal Data Mining: A Survey of Problems and Methods. ACM Comput. Surv. 2018,
51, 1–41. [CrossRef]

31. Pillai, K.G.; Angryk, R.A.; Banda, J.M.; Schuh, M.A.; Wylie, T. Spatio-Temporal Co-Occurrence Pattern Mining in Data Sets with
Evolving Regions. In Proceedings of the IEEE 12th International Conference on Data Mining Workshops, Brussels, Belgium, 10
December 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 805–812.

http://dx.doi.org/10.1080/13658816.2018.1533136
http://dx.doi.org/10.9790/0661-11291100
http://dx.doi.org/10.1016/j.knosys.2024.111406
http://dx.doi.org/10.1002/joc.8396
http://dx.doi.org/10.48550/arXiv.2401.08081
http://dx.doi.org/10.3934/aci.2023004
http://dx.doi.org/10.1016/j.eswa.2013.01.021
http://dx.doi.org/10.3233/JIFS-219245
https://pypi.org/project/apyori/
http://dx.doi.org/10.1145/201019.201036
http://dx.doi.org/10.1007/s00500-020-05015-2
http://dx.doi.org/10.1371/journal.pone.0256329
https://www.ijarcce.com/upload/2015/may-15/IJARCCE%2095.pdf
http://dx.doi.org/10.48550/arXiv.1506.07087
http://dx.doi.org/10.5815/ijitcs.2016.07.08
http://dx.doi.org/10.1016/j.jss.2016.11.035
http://dx.doi.org/10.1109/TKDE.2005.98
http://dx.doi.org/10.7753/IJCATR0304.1008
http://dx.doi.org/10.1080/13658816.2017.1406943
http://dx.doi.org/10.1016/j.ins.2013.02.050
http://dx.doi.org/10.1371/journal.pone.0097807
http://www.ncbi.nlm.nih.gov/pubmed/24893168
http://dx.doi.org/10.1145/3161602

Big Data Cogn. Comput. 2024, 8, 59 19 of 19

32. Pillai, K.G.; Angryk, R.A.; Aydin, B. A Filter-and-Refine Approach to Mine Spatiotemporal Co-Occurrences. In Proceedings of
the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Orlando, FL, USA, 5–8
November 2013; pp. 104–113.

33. Lahiri, M.; Berger-Wolf, T.Y. Periodic Subgraph Mining in Dynamic Networks. Knowl. Inf. Syst. 2010, 24, 467–497. [CrossRef]
34. Han, J.; Pei, J.; Yin, Y. Mining Frequent Patterns without Candidate Generation. ACM Sigmod Rec. 2000, 29, 1–12. [CrossRef]
35. Gutiérrez-Soto, C.; Galdames, P.; Navea, D. Efficiently Finding Cyclical Patterns on Twitter Considering the Inherent Spatio-

temporal Attributes of Data. J. Univers. Comput. Sci. 2023, 29, 4563– 4572. [CrossRef]
36. Xun, Y.; Wang, L.; Yang, H.; Cai, J. Mining Relevant Partial Periodic Pattern of Multi-Source Time Series Data. Inf. Sci. 2022,

615, 638–656. [CrossRef]
37. Bahmani, B.; Goel, A.; Shinde, R. Efficient Distributed Locality Sensitive Hashing. In Proceedings of the 21st ACM International

Conference on Information and Knowledge Management, Maui, HI, USA, 29 October–2 November 2012; pp. 2174–2178.
38. Jiang, Z.; Tang, Y.; Gu, J.; Zhang, Z.; Liu, W. Discovering Periodic Frequent Travel Patterns of Individual Metro Passengers

Considering Different Time Granularities and Station Attributes. Int. J. Transp. Sci. Technol. 2023, in press.
39. Savasere, A.; Omiecinski, E.; Navathe, S. An Effcient Algorithm for Mining Association Rules in Large Databases. In Proceedings

of the 21st International Conference on Very Large Databases (VLDB), Zurich, Switzerland, 11–15 September 1995; pp. 432–444.
40. Berberidis, C.; Aref, W.G.; Atallah, M.; Vlahavas, I.; Elmagarmid, A.K. Multiple and Partial Periodicity Mining in Time Series

Databases. In Proceedings of the 15th European Conference on Artificial Intelligence (ECAI), Lyon, France, 21–26 July 2002;
Volume 2, pp. 370–374.

41. Zheng, Y.; Fu, H.; Xie, X.; Ma, W.Y.; Li, Q. Geolife GPS Trajectory Dataset—User Guide. 2011. Available online: https://www.
microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/ (accessed on 1 June 2024).

42. Arge, L.; Berg, M.d.; Haverkort, H.; Yi, K. The Priority R-tree: A Practically Efficient and Worst-Case Optimal R-tree. ACM Trans.
Algorithms 2008, 4, 1–30. [CrossRef]

43. Hashem, I.A.T.; Anuar, N.B.; Gani, A.; Yaqoob, I.; Xia, F.; Khan, S.U. MapReduce: Review and Open Challenges. Scientometrics
2016, 109, 389–422. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10115-009-0253-8
http://dx.doi.org/10.1145/335191.335372
http://dx.doi.org/10.3897/jucs.112523
http://dx.doi.org/10.1016/j.ins.2022.10.049
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
http://dx.doi.org/10.1145/1328911.1328920
http://dx.doi.org/10.1007/s11192-016-1945-y

	Introduction
	Related Work
	Algorithms
	Apriori
	Max-Subpattern
	PPA
	Minus-F1
	FP-Growth
	Minus-F1's (Probabilistic Version)

	Time Complexity
	Experimentation
	Results Derived from the Synthetic Dataset
	Results Derived from the Geolife Dataset

	Discussion
	Synthetic Data Results
	Real Data Results

	Conclusions
	References

