
Fracton Infrared Triangle
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In theories with conserved dipole moment, isolated charged particles (fractons) are immobile, but
dipoles can move. We couple these dipoles to the fracton gauge theory and analyze the universal infrared
structure. This uncovers an observable double kick memory effect which we relate to a novel dipole soft
theorem. Together with their asymptotic symmetries this constitutes the first realization of an infrared
triangle beyond Lorentz symmetry. This demonstrates the robustness of these IR structures and paves the
way for their investigation in condensed matter systems and beyond.
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Introduction.—Fractons [1,2] are novel quasiparticles
whose characteristic feature is their limited mobility. This
restricted mobility originates from their built-in dipole
symmetry which leads to conserved dipole moments
di ¼ R

xiρd3x. Fracton theories attract attention not only
for their interesting phenomenological applications, but also
for their intricate theoretical underpinnings which challenge
common quantum field techniques [3–5]. The dipole sym-
metry is an example of generalized symmetries, whose study
has led to breakthroughs in our understanding of quantum
field theories [6,7]. Moreover, the underlying symmetries
are closely related to Carroll symmetries [8–11], which play
a fundamental role in flat-space holography [12–15].
The infrared (IR) triangle [16] is a triangular correspon-

dence, which connects asymptotic symmetries, memory
effects, and soft theorems. It controls the infrared behavior of
gravity and several relativistic gauge theories, and is a
building block of the celestial holography program [17–21].
In [22] asymptotic symmetries of the fracton gauge

theory were analyzed at spatial infinity and the existence of
soft charges already hinted at an infrared triangle, which we
establish in the current work, by uncovering a novel and
observable double kick memory effect, which we relate to a
dipole soft theorem and to novel asymptotic symmetries in
the radiation regimes. This shows that IR triangles indeed
persist beyond the Lorentzian setup and lead to exciting
new physics.

One consequence of the non-Lorentzian nature of the
fracton gauge theory is that its degrees of freedom have two
different dispersion relations and propagation speeds. As a
result, the spacetime has two radiative regions (see Fig. 1),
in contradistinction to the single null infinity in Lorentzian
theories. This makes the asymptotic structure of these
theories richer than that of their relativistic counterparts.
One of ourmain results is a novelmemory effect.Memory

effects refer to observables that persist in a probe system
after the passage of waves. Early examples of memory
effects in the context of gravity include the displacement of
freely falling test masses [23–26]. However, this field has
witnessed a significant interest in recent years due the to
discovery of new memory effects and their relation to
fundamental properties of gravity [16,27–40].While fracton
memory effect shares some features with gravity and some
with gauge theories, it has unique properties, in particular, it
leads to a double kick effect on test quasiparticles (dipoles),

FIG. 1. (a) Since the waves propagate with speeds c and c̃ the
theory has two different radiation zones (two “null infinities”).
(b) It follows that a dipole in the far region will receive two kicks,
but the orientation d⃗ of the dipole stays inert.
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as is depicted in Fig. 1. This double kick memory effect is a
measurable infrared observable and encourages the exciting
perspective to try to observe them in condensed matter
systems, especially considering the ongoing experimental
investigations into systems with dipole symmetry [41–44].
Fracton gauge theory.—In this section, we introduce the

(scalar charge) gauge theory [45,46] which describes the
interactions among charged fractons. It is a higher-rank
gauge theory defined by a scalar field ϕ and a symmetric
tensor Aij (i, j, k are spatial indices from 1 to 3), with the
Lagrangian density

L½Aij;ϕ� ¼
1

2
EijEij−

c2

4
FijkFijkþϕρ−AijJij; ð1Þ

where Eij ¼ ∂tAij − ∂i∂jϕ and Fijk ¼ 2∂½iAj�k. The con-
stant c has units of velocity and the tensors Eij and Fijk are
analogous to electric and magnetic tensors, respectively.
The symmetries imply F½ijk� ¼ 0 and the useful relation
Fi½jk� ¼ − 1

2
Fjki. The action (1) is invariant under the gauge

transformation

δΛϕ¼ ∂tΛ δΛAij¼ ∂i∂jΛ; ð2Þ

and leads to the equations of motion

∂i∂jEij ¼ ρ; ð3aÞ

∂tEij − c2∂kFk
ðijÞ ¼ −Jij; ð3bÞ

where ρ and Jij represent the charge and current densities,
respectively. Consistency of the field equations (3) leads to
the continuity equation ∂tρþ ∂i∂jJij ¼ 0 which implies
that the electric charge Q and dipole moment di

Q¼
Z

ρd3x; di ¼
Z

xiρd3x ð4Þ

of a localized source are conserved. The conservation of the
dipole moment implies, in particular, that isolated monop-
oles in this theory cannot move. Existence and time
independence of monopole and dipole charges (4) are
guaranteed by imposing asymptotic falloff conditions ρ ¼
Oð1=r4þϵÞ and Jij ¼ Oð1=r2þϵÞ for ϵ > 0.
Decoupled field equations and memory effect.—An

important consequence of the fact that the fracton gauge
theory is not Lorentz invariant is that various dynamical
degrees of freedom obey different dynamical equations. We
decouple the equations of motion using a systematic
decomposition of the gauge field into representations of
the rotation group as Aij ¼ AT

ij þ ATL
ij þ AL

ij, where the
superscripts T, TL and L, denoted collectively by ▪, refer to
transverse, transverse-longitudinal, and longitudinal pro-
jections A▪

ij ¼ P▪
ijmnAmn with

PT
ijmn¼PmðiPjÞn; PTL

ijmn¼2PmðiΠjÞn; PL
ijmn¼ΠmðiΠjÞn;

ð5Þ

defined in terms of longitudinal and transverse projectors
Πij ¼ ∂iΔ−1

∂j, Pij ¼ δij − Πij. While the T, TL projec-
tions are gauge invariant, the longitudinal component can
be written as AL

ij ¼ ∂i∂jψ , which is shifted under gauge
transformations δΛψ ¼ Λ. Using this decomposition, the
constraint equation (3a) reduces to ΔΔðψ̇ − ϕÞ ¼ ρ, which
implies that the gauge-invariant combination ψ̇ − ϕ is
nondynamical and the electric field is hence given by

Eij ¼ ȦT
ij þ ȦTL

ij þ ∂i∂jΔ−1ðΔ−1ρÞ: ð6Þ

Overdots denote time derivatives and Δ−1 is the inverse of
the Laplacian Δ ¼ ∂i∂

i, given by a Green function integral.
Using (6) in (3b) combined with Ḟijk ¼ 2∂½iEj�k, one finds
the decoupled dynamical equations

□cAT
ij¼ JTij; □c̃ATL

ij ¼ JTLij ; ð7Þ

where □c ≡ −∂2t þ c2Δ is the wave operator with speed
c. The unequal propagation speeds c and c̃ ¼ c=

ffiffiffi
2

p
of

the dynamical degrees of freedom reflect the non-
Lorentzian nature of this theory with Aristotelian sym-
metry structure [8,47]. The dynamical variables AT

ij, A
TL
ij

are gauge invariant and account for the expected 2þ 1
and 2 degrees of freedom, respectively. Equations (7) are
solved by

AT
ij¼PT

ijmn□
−1
c Jmn; ATL

ij ¼PTL
ijmn□

−1
c̃ Jmn; ð8Þ

where □−1
c represents the inverse of □c using a retarded

Green function integral. In deriving (6) and (8), we have
used the commutativity of derivatives with Δ−1, □

−1
c ,

which can be proven in Fourier space.
Asymptotic behavior.—Assuming that the source is

localized, the asymptotic behavior of the fields can be
derived from an asymptotic expansion of (8) as r → ∞. The
Coulombic contribution to (6) takes the form

Δ−1ðΔ−1ρÞ¼−
Z

d3x0

8π
jx−x0jρðx0Þ ¼−

Qr
8π

þOðr0Þ ð9Þ

and therefore

Eij ¼
1

r

�
˙̄AT
ij þ ˙̄ATL

ij −
Q
8π

P̄ij

�
þOð1=r2Þ; ð10Þ

where Ā▪
ij refers to the leading order behavior A▪

ij ¼
ð1=rÞĀ▪

ij þOð1=r2Þ. For the electric field, the nonlocal

projectors PT=TL
ijmn reduce, at leading order, to local projec-

tions on the sphere taking the same form as (5) but with
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ðΠij; PijÞ replaced by ðΠ̄ij ¼ ninj; P̄ij ¼ δij − Π̄ijÞ with
ni ¼ ðxi=rÞ the normal radial vector.
Radiation of scattering dipoles: Since in this theory

isolated monopoles cannot move, a natural setup is the
scattering of moving dipoles. The current of a dipole di

moving on a path ziðtÞ with velocity vi ¼ żiðtÞ is given
by [46]

ρðt; xÞ ¼ −di∂iδ3(x − zðtÞ) ð11aÞ

Jijðt; xÞ ¼ −dðivjÞδ3(x − zðtÞ): ð11bÞ

We can use the current to calculate the Green integral

□
−1
c Jij ¼

1

4πc2
dðivjÞ

Rð1 − R̂ · v=cÞ

����
tret¼t−R=c

; ð12Þ

whereR≡ x − zðtÞ andR, R̂ are its norm and unit direction,
respectively. This is the fracton dipole analog of the Liénard-
Wiechert solution of moving point charges in electrody-
namics. Inserting (12) into (8), one finds that far from the
source, asymptotic fields ĀT

ijðnÞ and ĀTL
ij ðnÞ ¼ nðiĀTL

jÞ of a
dipole moving with constant velocity are given by

ĀT
ij ¼

1

4πc2
d⊥ðiv⊥jÞ

1−n ·v=c
; ĀTL

i ¼ 1

4πc̃2
d⊥i vrþv⊥i dr
1−n ·v=c̃

; ð13Þ

where we use X⊥
i ≡ P̄ijXj and Xr ≡ Xini.

Memory effects: The scattering process of N dipoles
labeled by α ¼ f1;…; Ng will induce a memory δĀT

ij ¼
limu→∞½ĀT

ijðuÞ − ĀT
ijð−uÞ�, δĀTL

ij ¼ limũ→∞½ĀTL
ij ðũÞ −

ĀTL
ij ð−ũÞ� given by

δĀT
ijðnÞ ¼

1

4πc2
XN
α¼1

ηαdα⊥ði vα⊥jÞ
1 − n · vα=c

; ð14aÞ

δĀTL
i ðnÞ ¼ 1

4πc̃2
XN
α¼1

ηαðdα⊥i vαr þ vα⊥i dαrÞ
1 − n · vα=c̃

; ð14bÞ

where η ¼ 1 for outgoing and −1 for incoming dipoles and
u ≔ t − r=c, ũ ≔ t − r=c̃.
Double kick memory effect: These memory effects

have observable consequences. As an example, consider a
fractonic particle with dipole moment di at a large distance
r from the source of radiation, which has initial velocity vi0
at some initial time t ¼ t0. The dipole is affected by the
radiation through the generalized Lorentz force law [46]

v̇i ¼ −
dj

m
ðEij þ vkFkijÞ: ð15Þ

Using the asymptotic form (10) of the electric field and
an analogous expression for the magnetic field, and

integrating the result over time in the interval ðt0; tfÞ, we
find that there is a net kick effect on the dipole that is
proportional to the memory effects [up to order Oðr−2Þ]

δvr ¼ −
di

mr

�
δĀTL

i −
vj0
c
δĀT

ij

�
; ð16aÞ

δv⊥i ¼−1
mr

�
drδĀTL

i þdjδĀT
ij

�
1þvr0

c

�
−
qd⊥i
8π

δt

�
; ð16bÞ

where δt ¼ tf − t0. Each of the fast and slow radiative
modes cause a net kick effect on the test dipole and thus it
undergoes a double kick memory effect (see Fig. 1).
Asymptotic conditions and Bondi analysis of fractonic

waves.—An immediate consequence of the different propa-
gation speeds in this theory is that at very large distances,
there will be a decoupling of the T and TL sectors, defining
two distinct radiation zones: the fast radiation zone of T
waves, where t; r → ∞ while u ≔ t − r=c remains finite,
and the slow radiation zone of TL waves, with ũ ≔ t − r=c̃
finite. Accordingly, the radiative phase space splits into two
distinct phase spaces ΓT;ΓTL.
We will therefore analyze the structure of fields and

asymptotic symmetries in each of these asymptotic regions
independently. To this end, we solve (7) asymptotically in
the limit r → ∞. We assume that the source fields decay
fast enough, so that we can implement source-free wave
equations at leading orders. We use the notation ðc▪; u▪Þ to
unify results that are valid in both radiative regions with
their respective propagation speed and retarded time.
The transformation from Cartesian to spherical coordi-

nates,which aremore convenient for the asymptotic analysis
is carried out by suitable projections with the triad ðni; reAiÞ
and eiAðnÞ ¼ ð∂ni=∂θAÞ. The induced metric γAB ¼ δijeiAe

j
B

denotes the metric of the unit 2-sphere γABdxAdxB ¼ dθ2 þ
sin2θdφ2 which is used to lower and raise A; B;… indices
and has determinant γ. Therefore, the analysis in the
preceding sections reveals the following asymptotic behav-
ior for the electric field written as a tensor density, i.e.,
multiplied by r2

ffiffiffi
γ

p

Err ¼ Ērr þ r−1Err
ð−1Þ þOðr−2Þ; ð17aÞ

ErA ¼ ĒrA þ r−1ErA
ð−1Þ þOðr−2Þ; ð17bÞ

EAB ¼ r−1ĒAB þ r−2EAB
ð−2Þ þOðr−3Þ: ð17cÞ

The asymptotic behavior of the electric field is consistent
with the following falloff for the potentials

ϕ¼ q
8π

rþϕð0Þ þOðr−1Þ; Arr ¼Oðr−2Þ; ð18aÞ

ArA¼ ĀrAþOðr−1Þ; AAB ¼ rĀABþOðr0Þ: ð18bÞ
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Viewing Arr ¼ Oðr−2Þ as a gauge-fixing condition, (18) is
consistent with the asymptotic behaviors of (8) and (9), and
the parameter q is matched with the total charge Q of the
bulk solution. As shown in [22], this expression for the
leading order of ϕ is essential for achieving both finite
energy density and charges.
The falloff (18) is preserved under gauge transforma-

tions (2) with parameter of the form

Λ ¼ rλðθ;φÞ þ ucηðθ;φÞ þ ϵðθ;φÞ þOðr−1Þ; ð19Þ

and a similar expression in the slow radiation zone by
replacing ðu; cÞ by ðũ; c̃Þ and ðλ; ηÞ by ðλ̃; η̃Þ. The
corresponding gauge transformation take the same func-
tional form in both regions [except that ðλ; ηÞ → ðλ̃; η̃Þ in
the TL sector]

δΛĀrA ¼ −DAη; ð20aÞ

δΛĀAB ¼ DABλþ γAB

�
1

2
ðD2 þ 2Þλ − η

�
; ð20bÞ

where DA is the covariant derivative with respect to
γAB, while D2 ¼ DADA is the sphere Laplacian and
DAB ≡ 1

2
ðDADB þDBDA − γABD2Þ. The corresponding

charges and fluxes should be worked out in each radiative
region separately, as the radiative fields behave differently:
Transverse sector T: The radiative field in this region

is ĀABðu; θAÞ, while ĀrA and ϕð0Þ are time independent
functions on the sphere, we therefore find

ĒrA ¼ 0 ĒAB ¼−
ffiffiffi
γ

p
γAB

q
8π

þ ffiffiffi
γ

p ˙̄AAB: ð21aÞ

Transverse-longitudinal sector TL: The radiative field
in this region is ĀrAðũ; θAÞ, while ĀAB and ϕð0Þ are time
independent. Accordingly,

ĒrA ¼ ffiffiffi
γ

p
γAB ˙̄ArB; ĒAB¼−

ffiffiffi
γ

p
γAB

q
8π

: ð22Þ

The charges corresponding to asymptotic symmetries (19)
can be worked out using canonical or covariant phase space
methods [48,49]. To get finite charges, we also impose the
following constraints [22], consistent with the solutions
obtained in the previous section

Ā; Ȧð0Þ;ϕð0Þ; λ; η containl ≥ 1 harmonics ð23Þ
in a harmonic expansion in Yl;mðθ;ϕÞ. Using the equation
of motion

1

c▪
˙̄Err þ Ē − 2DAĒrA ¼ −

ffiffiffi
γ

p q
4π

; ð24Þ

together with the conditions (21) or (22), one finds that the
total charge is finite and reads

Q½ϵ; λ; η� ¼
I

d2x
�
−ϵ

ffiffiffi
γ

p q
4π

þ λP þ ηQ
	
; ð25Þ

where the charge densities depending on the radiation zone
are given by

P≔ Ērr−2DAErA
ð−1Þ þEð−2Þ þ

1

c▪
Ėrr
ð−1Þ; Q≔−Ērr:

The term proportional to ϵ in (25) gives the total charge,
while terms proportional to λ and η give two infinite sets of
charges in each sector, where the conserved dipole moment
is the l ¼ 1 in the mode expansion of P.
In the presence of radiation, charges are no longer

conserved, but carried away by fractonic waves. The time
evolution of the charges are specified by the following flux
equations derived from the equations of motion. In the fast
radiation zone (T sector)

Ṗ¼−
ffiffiffi
γ

p ðDADBþ γABÞ ˙̄AAB; Q̇¼ c
ffiffiffi
γ

p ˙̄A; ð26Þ

whereas in the slow radiation zone (TL sector)

Ṗ¼ 0; Q̇¼−2c̃
ffiffiffi
γ

p
DA ˙̄ArA: ð27Þ

Note that (26) ensures the conservation of the dipole
moment (the l ¼ 1 modes of P). Specifically, the TT
component of ˙̄AAB does not contain modes with l ¼ 1,
while the l ¼ 1 mode of its trace is annihilated by the
operator D2 þ 2 in front of it.
According to the flux-balance equations

dE
dt

¼−c
I

d2x
ffiffiffi
γ

p ˙̄AAB ˙̄AAB; ðTsectorÞ; ð28aÞ

dE
dt

¼−2c̃
I

d2x
ffiffiffi
γ

p
γAB ˙̄ArA

˙̄ArB; ðTLsectorÞ; ð28bÞ

implying that radiation carries away energy from the
system, which is the fractonic analogue of Bondi’s energy
loss formula [50,51]. Note that the fluxes have a definite
sign, as expected.
Memory effect and asymptotic symmetries.—In this

section, we show that fracton memory effects can be
realized as a vacuum transition under fracton asymptotic
symmetries. Consider a dynamical process in which the
system is nonradiative before some initial time and after

some final time, implying that ˙̄AAB ¼ 0 in the limit

u → �∞ and ˙̄ArA ¼ 0 in the limit ũ → �∞. The memory
effect discussed in the section on radiation of scattering
dipoles implies that the vacua are not identical before and
after radiation. Rather, the transition between the vacua
induces a large gauge transformation as we will see shortly.
Starting from (14) and transforming to spherical coor-

dinates, we find that the memory terms can be expressed in
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terms of three scalar memory fields CS; CV; CT on the
sphere (S, V, T refer to scalar, vector, and tensor modes)

δĀAB ¼DABCTþ
1

2
γABCS δĀrA ¼ 0; ðTsectorÞ;

δĀrA ¼DACV δĀAB¼ 0 ðTLsectorÞ: ð29Þ

The first (second) line refers to the memory accumulated
during the fast (slow) radiation.
Memory as vacuum transition: In each sector, the

corresponding memory leads to a change of vacuum given
by a large gauge symmetry. The memory δĀrA in the TL
sector corresponds to a large gauge transformation given by
η̃ ¼ −CV, λ̃ ¼ 0 in (20). The T sector is subtle, the memory
δĀAB corresponds to choosing λ ¼ CT, η ¼ 1

2
½ðD2 þ

2ÞCT − CS� in (20). This choice also induces a change in
ĀrA, but that is no problem since ĀrA is not part of the
radiative phase space of the T sector. These equations can
be inverted to compute the memory fields

CVðnÞ ¼
ni

4π

Z
dΩ0 δĀ

TL
i ðn0Þ

1 − n · n0
; ð30aÞ

CTðnÞ ¼
ninj

4π

Z
dΩ0 δĀ

TT
ij ðn0Þ

1 − n · n0
; ð30bÞ

CSðnÞ ¼ P̄ijδĀT
ijðnÞ; ð30cÞ

where A≡ P̄ijĀT
ij and Ā

TT
ij ¼ ĀT

ij− 1
2
P̄ijA. Implementing (14)

in these equations reveals the memory fields. The change in
the charges resulting from radiation flux is also exclusively
determined by the memory fields. Integrating (26) and (27)
in time, and using (29), one finds that the flux of charges
through the fast radiation (T sector) is given by

δP ¼ −
1

2
c

ffiffiffi
γ

p ðD2 þ 2ÞðD2CT þ 2CSÞ; ð31aÞ

δQ ¼ 2c
ffiffiffi
γ

p
CS; ð31bÞ

while the slow radiation (TL sector) carries

δQ¼−2c̃
ffiffiffi
γ

p
D2CV; δP¼ 0: ð32Þ

Thus we have established connections between asymptotic
symmetries and memory effects in the fracton infrared
triangle.
Another important aspect to consider is the matching

conditions at the intersection of the different radiation
regions. We expect to discuss this point in detail in the
extended version of our work [52].
Soft factors from the memory effect.—In this section, we

determine the soft factors for a scattering process of dipoles
from the memory effect.

Consider a scattering process of N dipoles with momen-
tum pα ¼ mαvα and dipole moment dα, with the emission
of one fractonic soft photon with frequency ω and
polarization projectors ϵij▪ . The scattering amplitude is
expected to factorize in the soft limit ω → 0 as

Anþ1ðvα; dα;ω; ϵ
ij
▪ Þ ¼ 1

ω
ϵij▪ S▪ijAnðvα; dαÞ þOðω0Þ: ð33Þ

To derive the soft factor S▪ij, we will closely follow [30].
We illustrate the derivation for the T sector, while the
analysis for the TL sector would be similar. Starting from a
Fourier mode decomposition of the gauge field AT

ij, it can
be shown that the radiative field ĀT

ij ¼ limr→∞ðrĀT
ijÞ can be

computed using a saddle point approximation

ĀT
ijðu; nÞ ¼

i
2

Z
dω

ð2πcÞ2


ϵαija

†
αðω; nÞeiωu − c:c:

�
;

where α labels the transverse mode with polarization ϵαij,

created by a†α. The next step is to use this result to compute
the memory

δĀT
ij ¼

Z
du ˙̄AT

ij ¼ −
1

4πc2
ϵαij limω→0

½ωa†αðω; nÞ þ c:c:�:

This equation relates the memory to the creation and
annihilation of a fractonic soft (zero frequency) photon.
As a result, an amplitude with an external soft photon
factorizes according to (33) with soft factors

S▪ij ¼ −4πc2#δĀ▪
ij: ð34Þ

Thus, the soft factors STij; S
TL
ij in (33) are given up to overall

factors −4πc2▪ by (14a) and (14b), respectively. An alter-
native derivation of the soft factors is detailed in
Supplemental Material [53] and involves the use of
Feynman diagrams within a simple effective model that
describes the dynamics of dipoles coupled to the fracton
gauge field.
Discussion and outlook.—In this work, we introduced an

observable double kick memory effect (see section on
decoupled field equations and memory effect) and the
corresponding dipole soft theorem (see section on soft
factors from the memory effect), which we related to the
asymptotic symmetries of fracton gauge theory. This
provides the first instance of an IR triangle for a theory
beyond Lorentz symmetry and further evidence for the
robustness of this triangular correspondence.
The tools developed and implemented in this work can

be used to study radiation and IR effects beyond Lorentzian
symmetries, which opens the door to explore other models
of relevance to condensed matter systems and beyond,
e.g., [45,46,56–83]. The double kick effect (see Fig. 1)
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is an example of a novel memory observable which exhibits
the more intricate structure that can appear in a non-
Lorentzian theory.
One avenue we would like to highlight involves leverag-

ing dualities in 2þ 1 dimension between (specific models
of) fractons and vortices [84] as well as the relationship with
elasticity [85,86] (see [87] for a review). These dualities
open up exciting possibilities for creating experimental
setups that are potentially easier to realize and which could
facilitate the observation of memory effects (see also [88]).
While fractons have originated from condensed matter

physics, they might play an important role in the holo-
graphic understanding of gravity in asymptotically flat
spacetimes. The reason is the correspondence between the
fracton algebra and the Carroll algebra which is the
underlying symmetry of gravity in asymptotically flat
spacetimes [9–11,89–91]. Indeed, many of the discussed
dualities and experiments can equally well be seen though
the lens of Carrollian physics, e.g., in [92] insights from
fractons have been used in the context of Carroll fluids.
We have focused on the leading IR behavior. However, it

might be interesting to explore subleading effects and
consider how celestial holography [17–21] could be
extended to this setup. After all Lorentz symmetry is
absent, but we still recover an analog IR structure. In
addition, to getting closer to experiments that investigate
dipole symmetry [41–44] it might also be interesting to
introduce and study boundaries at finite distances.
Motivated by the historically prolific interdisciplinary

dialogue between high-energy and condensed matter phys-
ics, we are also excited by the prospect that the inaugural
experimental validation of memory effects may manifest
within the domain of condensed matter systems. We hope
that this work will serve as an initial stepping stone for this
promising endeavor.
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