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Abstract: In recent decades, climate change has led to ocean warming, causing more frequent extreme
events such as marine heatwaves (MHWs), which have been understudied in the Caribbean Sea. This
study addresses this gap using 30 years of daily sea surface temperature (SST) data, complemented
by projections for the 21st century from nineteen Coupled Model Intercomparison Project Phase 6
(CMIP6) models. In the 1983–2012 period, significant trends were observed in the spatially averaged
MHWs frequency (1.32 annual events per decade and node) and mean duration (1.47 ± 0.29 days per
decade) but not in mean intensity. In addition, MHWs show large monthly variations in these metrics,
modulated by interannual and seasonal changes. MHWs seasonality is different in the three used
metrics, being more intense and frequent in warm and rainy months (intensity between 1.01 to 1.11 ◦C,
duration 6.79 to 7.13 days) and longer lasting in late boreal winter (intensity between 0.82 to 1.00 ◦C,
duration 7.50 to 8.31 days). The MHWs behavior from two extreme months show that these events
can occur in both small and large areas in the Caribbean. Overall, models tend to underestimate the
annually averaged MHWs frequency and intensity, while they overestimate duration when compared
to observations. MHWs projections are more extreme under SSP585, as they are sensible to the
radiational scenario. However, an increase in MHWs intensity and duration (events lasting as much
as 154 days by 2100) is expected, driving a decrease in frequency (−37.39 events per decade under
SSP585 by 2100). These projections imply that MHWs conditions at the beginning of the century will
be nearly permanent in the Caribbean’s future. Nonetheless, caution is advised in interpreting these
projections due to differences between models’ simulations and observed data. While advancements
in oceanic models within CMIP6 demonstrate progress compared to previous CMIP initiatives,
challenges persist in accurately simulating extreme events such as marine heatwaves.

Keywords: sea surface temperature extremes; marine heatwaves metrics; MHW intensity; MHW
frequency; MHW duration

1. Introduction

For over a century, the world’s oceans have been warming due to climate change
effects, generating more frequent extreme phenomena [1–4]. This warming has increased
the marine heatwaves’ (MHWs) intensity and duration [5–7]. At a global scale, MHWs
events in the 1987–2016 period increased over 50% when compared to the 1925–1954 period,
showing the Caribbean Sea (CAR hereinafter) as a hot-spot region due to the significant
negative impacts observed in the biosphere [8].

The MHWs term was first introduced by [9], who quantitatively defined this event
as a discrete period of anomalously warm water exceeding either a fixed [7], a seasonally
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varying [5], or a cumulative threshold [10]. MHWs are caused by oceanic or atmospheric
processes only or by a combination of them, including geostrophic advection, mesoscale
mixing, Ekman advection, turbulent heat fluxes, radiative heat fluxes, vertical mixing, and
outgoing shortwave radiation, among others [6]. Moreover, MHWs may be modulated by
large-scale variability [11].

Climate models are an essential tool to predict the future occurrence of MHWs as-
sociated with different radiative scenarios [12]. These global general circulation models
(GCMs) are crucial for forecasting future climate trends, simulating intricate interactions
among ocean, atmosphere, cryosphere, and land and yielding insights into their dynamic
behavior [13,14]. Thus, they are recognized as the one of the most foremost instruments for
gauging the Earth’s climate response to diverse radiative scenarios, playing a pivotal role
in assessing atmospheric impacts of greenhouse gases concentrations. The Coupled Model
Intercomparison Project (CMIP) provides a framework for evaluating and contrasting
outcomes from these models, developed by various research groups [15,16].

Several studies have shown that MHWs have increased in their frequency and days
of occurrence, values which are expected to increase throughout the 21st century due
to climate change effects [6,7,12,17]. However, the accurate reproduction of MHWs by
climate models is challenging due to limitations in their spatial resolution, which cause an
underestimation of sea surface temperature (SST) anomalies in eddy-rich regions [18] such
as the CAR [19]. As a consequence of this limitation, global and regional MHWs assessment
using models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) tends
to simulate less frequent, weaker, and longer-lasting events when compared to observa-
tions [20–22]. Results from the latest CMIP6 models show similar biases to CMIP5 models,
especially related to the models’ spatial resolution limitations [12]. However, CMIP6 mod-
els have several improvements when compared to previous models, such as their better
spatial resolution, the improved use of parameterization schemes to reproduce physical
processes [16,23], and an overall better performance reproducing extreme phenomena [24].

Since the publication of CMIP6 results, various studies have assessed MHWs projec-
tions at global and regional scales, showing an increase in their frequency and duration.
These results seem to be related to climate change effects, as they are sensitive to the
21st shared socioeconomic pathway (SSP) used [12,25–27]. SSPs are described as stories
that happen in the future and are based on five narratives describing alternative socio-
economic developments, including sustainable development (SSP1), middle of the road
(SSP2), regional rivalry (SSP3), inequality (SSP4), and fossil-fueled development (SSP5) [28].
However, MHWs studies using CMIP6 models in the CAR are scarce. Studying these
events in the CAR is vital since MHWs can generate irreversible damage to marine life,
causing severe alterations to marine biodiversity and to the composition and functioning
of crucial ecosystems in this region [29,30]. For this reason, the few available MHWs
studies in the CAR focus on their effects on coral bleaching and loss [31,32] and ecosystems
impacts [33,34]. Conversely, the MHWs characteristics in the CAR such as frequency, in-
tensity, and days of duration and their future projections with CMIP models have been
poorly investigated.

The CAR is a semi-enclosed tropical body of water located east of Central America,
north of South America and west of Antilles, which separates it from the Atlantic Ocean [35].
It is considered one of the largest seas in the world, with a surface area of approximately
2.75 million km2. The depth of the CAR varies from shallow waters near the coast to depths
of more than 7000 m in some areas (see Figure 1). This sea also has various important
ecosystems, such as coral reefs, mangroves, coastal forests, and submarine plains [36]. The
CAR tropical climate is characterized by warm temperatures throughout the year, with
two main seasons modulated by the Intertropical Convergence Zone (ICTZ) meridional
position. A dry season from December to March, which is relatively colder as it coincides
with boreal winter, is characterized by strong winds and low precipitation. A rainy season
from August to November has weak winds and is relatively warmer, as it coincides with
boreal summer. A ~2 ◦C difference is observed in temperature at the mixed layer depth
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between these two seasons [37]. During the rainy–warm season, the region is prone to
hurricanes that significantly affect the region’s ecology, economy, and culture.

Remote Sens. 2024, 16, x FOR PEER REVIEW 3 of 23 
 

 

relatively colder as it coincides with boreal winter, is characterized by strong winds and 
low precipitation. A rainy season from August to November has weak winds and is 
relatively warmer, as it coincides with boreal summer. A ~2 °C difference is observed in 
temperature at the mixed layer depth between these two seasons [37]. During the rainy–
warm season, the region is prone to hurricanes that significantly affect the region’s 
ecology, economy, and culture. 

In this study, we pursued three main objectives outlined as follows: 
• Characterize MHWs in the CAR using different metrics (mean intensity, duration, 

and frequency) calculated from daily SST time series from 1983–2012 period; 
• Evaluate the reliability of 19 CMIP6 models to simulate MHWs in the CAR during 

the period of SST observations; 
• Assess MWH projections from 2041 to 2100 using CMIP6 models under two SSPs 

scenarios (SSP245 and SSP585), providing insights into future MHW variations in the 
CAR. 
The main motivation of this paper is to improve the understanding MHWs in the 

CAR from 30 years of observations. However, to make this information valuable to 
stakeholders and enhance sustainable development and management measures, we need 
to understand how MHWs are projected to behave by the end of the century as a 
consequence of global warming. If this is achieved, actions can be taken to minimize 
negative consequences to the biosphere and coastal communities related to MHWs events. 
GCMs models are the best available tool to fulfill this goal. For this reason, we first 
evaluate the model’s accuracy against observations and then present the models’ MHWs 
projections. Therefore, results from this study contribute to fill the gap between the 
assessment of observed MHWs in the CAR and MHWs projections for the rest of the 
century under different global warming scenarios, which are an important asset to 
continue mitigation and adaptation efforts. 

 
Figure 1. Caribbean Sea bathymetry from [38]. Red polygon indicates Caribbean Sea limits used to 
assess marine heat waves (MHW). Boxes 1, 2, and 3 are used to represent the Venezuelan, Cayman, 
and Colombian Basins, respectively. 

Figure 1. Caribbean Sea bathymetry from [38]. Red polygon indicates Caribbean Sea limits used to
assess marine heat waves (MHW). Boxes 1, 2, and 3 are used to represent the Venezuelan, Cayman,
and Colombian Basins, respectively.

In this study, we pursued three main objectives outlined as follows:

• Characterize MHWs in the CAR using different metrics (mean intensity, duration, and
frequency) calculated from daily SST time series from 1983–2012 period;

• Evaluate the reliability of 19 CMIP6 models to simulate MHWs in the CAR during the
period of SST observations;

• Assess MWH projections from 2041 to 2100 using CMIP6 models under two SSPs
scenarios (SSP245 and SSP585), providing insights into future MHW variations in the
CAR.

The main motivation of this paper is to improve the understanding MHWs in the CAR
from 30 years of observations. However, to make this information valuable to stakeholders
and enhance sustainable development and management measures, we need to understand
how MHWs are projected to behave by the end of the century as a consequence of global
warming. If this is achieved, actions can be taken to minimize negative consequences to
the biosphere and coastal communities related to MHWs events. GCMs models are the
best available tool to fulfill this goal. For this reason, we first evaluate the model’s accuracy
against observations and then present the models’ MHWs projections. Therefore, results
from this study contribute to fill the gap between the assessment of observed MHWs in
the CAR and MHWs projections for the rest of the century under different global warming
scenarios, which are an important asset to continue mitigation and adaptation efforts.

2. Materials and Methods
2.1. MHWs Definition

Fixed [7,20] or mobile thresholds [39] through the year are used to detect MHWs.
Their main difference is that mobile thresholds can evolve in time, accounting for global
warming, but also are used to remove the seasonality in the MHWs estimation, using a
fixed reference period [7]. Therefore, the method selection will depend on the scientific
question being assessed. In this study, we used mobile thresholds to remove seasonality
but using a fixed period of time to better assess the MHWs forcing in the CAR, regardless
of the season.
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To identify MHWs, we used the method proposed by [5] to facilitate comparisons with
other studies. MHWs occurs when daily SST exceeds a certain threshold for a minimum
of five consecutive days. If consecutive events are interrupted for up to two days, they
are considered a single event. At each grid cell, the 90th SST percentile threshold was
determined using data available from an 11-day window centered on each calendar day,
which was finally smoothed with a 31-day moving average. This methodology is the same
as the one proposed by [22]. It was shown that modifying the thresholds percentiles does
not significantly affect the conclusions regarding MHWs future projections [40].

MHWs discrete events are defined in each node by its duration and intensity. The
event duration (D) indicates the number of days the SST exceeds the daily varying threshold
value (Equation (1)), while the event intensity (imean) corresponds to the average of the
daily SST anomalies through the event (Equation (4)).

D = te − ts (1)

where ts, te represent the dates on which an MHW starts (s) and ends (e), defined in
Equations (2) and (3):

ts = time t, where T(t) > T90(j) and T(t − 1) < T90(j) (2)

te = time t, where te > ts and T(t) < T90(j) and T(t − 1) > T90(j) (3)

where T90(j) = P90(X), in which P90 is the 90th percentile, and P90(X), where
X = {T(y, d)|ys ≤ y ≤ ye, j − 5 ≤ d ≤ j + 5}, with T(y, d) being the SST for the year y and
day of year d.

imean = T(t)− Tm(j) (4)

where T(t) is the SST at the time t for a given location, and Tm(j) is the climatological
mean, calculated over a reference period to which all the values are relative as defined in
Equation (5):

Tm(j) =
ye

∑
y=ys

j+5

∑
d=j−5

T(y, d)
11(ye − ys + 1)

(5)

where j is the day of year, and ys and ye are the start and end of the climatological base
period, respectively.

In addition, MHWs were characterized over a given period (e.g., one year or month)
in terms of the number of discrete events (frequency) as well as the mean duration and
mean intensity, using a simple average of all events’ duration and intensity in the period
observed for each node. Spatially averaged MHWs metrics for the CAR were calculated
from the simple average of the MHWs intensity and duration using all nodes in the region
where at least one event occurs in the given period. Nodes without events were excluded
to avoid underestimation. In the case of the spatially averaged MHWs frequency, we report
the sum of events from all available nodes in the study area and period assessed [21].

Time series trends were calculated using the Theil–Sen Slope estimator [41] to avoid
biases and variance in the estimation using Equations (6) and (7), where xj and xk are the
data values at times j and k with j > k, N is the number of samples, i represents each
one of the samples, and Qmed is the final estimator. The confidence interval selected is
99% and the p-value to determine the significance was calculated using the Mann–Kendall
test [42,43] defined in Equation (8), where E[S] and VAR(S) represent the expected value
and the variance (Equations (9) and (10)), respectively, of the statistic S (Equation (11)).
The advantages of these non-parametric tests include their robustness to outliers and are
recommended by the World Meteorological Organization (WMO) as standard tools for
trend analysis [44].

Qi =
xj − xk

j − k
f or i = 1, . . . ., N (6)
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Qmed =

{
Q[(N+1)/2] i f N is odd
Q[N/2]+Q[(N+2)/2]

2 i f N is even
(7)

ZMK =


E[S]−1√
VAR(S)

. E[S] > 0

0 E[S] = 0
E[S]+1√
VAR(S)

, E[S] < 0
(8)

E[S] =
n−1

∑
j=1

n

∑
k=j+1

sgn
(
xj − xk

)
(9)

VAR(S) =
1
18

(
n(n − 1)(2n + 5)−

p

∑
k=1

qk(qk − 1)(2qk + 5)

)
(10)

S = sgn
(
xj − xk

)
=


1, xj − xk > 0
0, xj − xk = 0

−1, xj − xk < 0
(11)

2.2. Models and Observational Datasets

We used the National Oceanic and Atmospheric Administration Optimum Interpola-
tion Sea Surface Temperature V2 (NOAA OISSTV2) high-resolution dataset [45], to assess
the current climate state using a 30-year time series (1983–2012) based on SST observations.
This daily dataset, with a 0.25◦ spatial resolution, has been used in different studies to
analyze the MHWs behavior around the planet [46–48].

Nineteen CMIP6 models from the OMIP (Ocean Model Intercomparison Project)
experiment (Table 1) were used [16], considering only data from the r1i1p1f1 run. These
models have the same realization, initialization, physics, and forcing. The data were
accessed from the Program for Climate Model Diagnosis and Intercomparison (PCMDI) at
https://pcmdi.llnl.gov/CMIP6/ (accessed on 25 October 2023). The model’s daily SSTs
were downloaded from the Earth System Grid Federation (https://esgf-node.llnl.gov/
projects/cmip6/, last accessed: 10 April 2023).

Table 1. List of CMIP6 models used in the study.

No. Model Acronym Country Horizontal Resolution
(Lon × Lat in Degrees) References

1 ACCESS-CM2 Australia 1.0 × 1.0 [48]
2 ACCESS-ESM1-5 Australia 1.0 × 1.0 [49]
3 BCC-CSM2-MR China 1.0 × 1.0 [50]
4 CanESM5 Canada 1.0 × 0.5 [51]
5 CESM2 USA 1.1 × 0.6 [52]
6 CMCC-CM2-SR5 Italy 0.9 × 0.3 [53]
7 CMCC-ESM2 Italy 1.0 × 0.8 [54]
8 EC-Earth3 UK 1.0 × 1.0 [55]
9 EC-Earth3-CC UK 1.0 × 1.0 [55]
10 EC-Earth3-Veg UK 1.0 × 0.8 [55]
11 EC-Earth3-Veg-LR UK 0.9 × 0.9 [55]
12 GFDL-CM4 USA 1.0 × 1.0 [56]
13 GFDL-ESM4 USA 0.5 × 0.5 [57]
14 KIOST-ESM South Korea 0.5 × 0.8 [44]
15 MIROC6 Japan 1.0 × 0.7 [58]
16 MPI-ESM1-2-HR Germany 0.4 × 0.5 [59]
17 MPI-ESM1-2-LR Germany 1.4 × 0.8 [60]
18 NorESM2-LM Norway 1.0 × 0.5 [61]
19 NorESM2-MM Norway 1.0 × 0.8 [62]

https://pcmdi.llnl.gov/CMIP6/
https://esgf-node.llnl.gov/projects/cmip6/
https://esgf-node.llnl.gov/projects/cmip6/
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A total of 195 grid cells or nodes inside the red polygon shown in Figure 1 were used
to assess MHWs from the OISST dataset. Only nodes in the CMIP6 models with >50% of
oceanic area were included [49]. This information is available in the “land_area_fraction”
variable provided in all CMIP6 models [50]. OISST nodes data were derived from the
CMIP6 models’ reference grid.

The modeled MHWs analysis was performed using the historical run and future
projections in the 2041–2100 period, which was divided in two 30-year periods to represent
the mid-century (2041–2070) and end-century (2071–2100) scenarios. Projections were
assessed from the two future socio-economic pathways (SSPs) SSP2-4.5 and SSP5-8.5,
indicating the representative concentration pathways (RCP) 4.5 and 8.5, respectively, for
the 2015–2100 period [51]. The 1983–2012 period from the historical run was used to
assess the models’ performance in comparison to the OISSTV2 dataset and to compute
the historical baseline climatology and the daily SST thresholds used to define MHWs in
the modeled data. The MHWs assessment in 30-year periods helps to reduce the internal
models’ variability and short-term fluctuations [5]. In addition, the CMIP6 models’ ability
to reproduce observed SST seasonality was assessed using regional means in three areas
with the same number of nodes (Figure 1). The seasonality assessment was included due to
its importance in defining MHWs metrics in CAR. A regression with mean, trend, annual,
and semi-annual cycles (e.g., [52]), was fitted to the spatially averaged SST time series
from the OISST monthly observations and individual models in each area. These areas
were selected because they have different modes of variability related to different dynamic
processes (e.g., [37]).

Both the NOAA OISSTV2 and the models’ SST daily datasets were re-gridded to a
common 1.0◦ × 1.0◦ grid using bilinear interpolation, avoiding extrapolation. This allows
direct comparisons between both datasets. This interpolation method has been widely used
in rectangular grids because it is easy to implement and reduces computational costs [53].
The 19 models in the common grid were used to compute a multi-model mean (MMM). In
addition, the five models with the best performance were selected to compute their mean
(5MMM). Averaging results from different individual models is a common practice that
helps to reduce the inherent variability and uncertainty in predictions [16].

Models’ degree of correspondence to the NOAA OISST V2 SST dataset was evaluated
with a Taylor diagram. This method uses three statistics, namely the correlation coefficient
(CORR; Equation (12)), normalized standard deviation (STD; Equation (13)), and root mean
square error (RMSE; Equation (14)) between models and the reference dataset. Taylor
diagrams [54] provide a graphical summary of how closely a given simulated variable
matches a reference one, and they are a standard method to assess models’ performance
reproducing oceanographic variables such as SST [55,56] and precipitation [57], and they
are also an accepted method to assess performance metrics in climate models [58,59].

CORR =
∑n

i=1 (yi − y)(ŷi − y)√
∑n

i=1(yi − y)2
√

∑n
i=1(ŷi − y)2

(12)

STD =

√
1

n − 1

n

∑
i=1

(yi − y)2 (13)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (14)

where yi and ŷi represent the observed and model values, respectively; n is the number of
observations and y the mean.

In this study, seasonal assessment was performed using the average between De-
cember to March (DJF) and September to October (SON) for the dry and rainy seasons,
respectively [60].
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3. Results
3.1. Evaluation of CMIP6 Models Performance

CMIP6 models’ performance reproducing daily SST in the CAR was evaluated against
the NOAA OISST V2 using a Taylor diagram (Figure 2, Table 2). Most models showed
good correspondence since statistics ranges were 0.50–0.80 for correlation, 0.61–1.27 ◦C for
RMSE, and 0.81–1.79 ◦C for normalized standard deviation. The best performance was
achieved by the MMM (and CESM2 model), with a correlation of 0.77 (0.80), RMSE of 0.64
(0.61) ◦C, and normalized standard deviation of 0.95 (0.86) ◦C. The CESM2 model showed
a good performance reproducing MHWs in other regions, such as the South Atlantic [61],
South and North Pacific, and equatorial band [62]. Conversely, the MIROC6 model has the
poorer performance, with higher normalized standard deviation (1.79) and RMSE (1.27).
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Figure 2. Taylor diagram comparing daily SST time series from the NOAA OISSTV2 dataset (red
circle) and 19 GCMs (Table 1) in the 1983–2012 period. Models are differentiated by symbol and
color. The 5 models’ mean (5MMM—red circle) and 19 models’ mean (MMM—orange square) are
highlighted. Blue dotted lines represent the 0.70 and 0.90 correlation values, and gray concentric
circles represent the root mean square error (RMSE). The normalized standard deviation is shown with
arcs of circles connecting values in the horizontal and vertical axes. Statistics’ values are presented in
Table 2.
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Table 2. Normalized standard deviation (STD in ◦C), correlation (CORR), and root mean square error
(RMSE in ◦C) estimated for CMIP6 models against NOAA OISST V2 dataset in the 1983–2012 period.
* indicates models selected to compute the five models’ mean (5MMM).

Model STD CORR RMSE

ACCESS-CM2 1.10 0.50 1.07
* ACCESS-ESM1-5 1.05 0.74 0.74

BCC-CSM2-MR 1.38 0.78 0.84
CanESM5 1.60 0.74 1.12
* CESM2 0.86 0.80 0.61

CMCC-CM2-SR5 1.59 0.76 1.07
CMCC-ESM2 1.27 0.77 0.81

EC-Earth3 1.46 0.76 0.93
EC-Earth3-CC 1.39 0.76 0.85
EC-Earth3-Veg 1.47 0.75 0.91

EC-Earth3-Veg-LR 1.46 0.76 0.90
GFDL-CM4 1.11 0.73 0.92

* GFDL-ESM4 0.98 0.72 0.76
KIOST-ESM 1.42 0.70 1.02

MIROC6 1.79 0.73 1.27
MPI-ESM1-2-HR 1.21 0.72 0.83
MPI-ESM1-2-LR 1.52 0.74 1.06
* NorESM2-LM 0.81 0.68 0.76
* NorESM2-MM 0.84 0.69 0.74

MMM 0.95 0.77 0.64
5-MMM 0.74 0.81 0.59

Moreover, we used the five models with the best performance (CESM2, NorESM2-LM,
NorESM2-MM, GFDL-ESM4, and ACCESS-ESM1-5) to compute their SST mean (5MMM).
The 5MMM has the highest correlation and lowest RMSE (Table 2) out of all models,
improving in two of the three statistics when compared to the MMM. Therefore, here-
inafter, we used the 5MMM to assess MHWs from the CMIP6 models. In addition, we
assessed individual results from the CESM2 since it demonstrated good performance in
nearby regions.

Furthermore, upon a reviewer’s recommendation, we assessed the ability of the CMIP6
models to reproduce the SST seasonality in the 1983–2012 period in three areas shown in
Figure 1. Time series from the five models with best performance were assessed (Table 2).
The first area shows seasonality related to Venezuela Basin, the second area the Cayman
Basin, and the third area the southern Colombian Basin. The findings reveal that both the
annual and semi-annual cycles play significant roles, explaining 78% to 91% of the daily
SST variance in the three distinct areas (Table S1, Supplementary Material). Notably, the
annual cycle consistently outweighs the semi-annual cycle across these regions, peaking
in September. There are notable differences among regions; for instance, Cayman Basin
shows the highest annual cycle but a lower semi-annual cycle, while Colombia Basin shows
the opposite pattern. Models generally accurately capture these cycles, although slight
differences exist in their amplitude, phase, and explained variance. Overall, the models
effectively simulated the seasonal SST cycle within these studied areas.

3.2. MHWs from Observations in the 1983–2012 Period and Comparison to Models
3.2.1. Annual Variability

The CAR NOAA OISSTV2 annual time series reveals positive and significant trends
for the MHWs spatially averaged duration and frequency (sum of events per year from
all CAR nodes) in the 1983–2012 period (Figure 3). The frequency of occurrence increases
at a rate of 259.20 ± 72.93 annual events per decade (1.32 annual events per decade for
each of the 195 nodes) and the mean duration at 1.47 ± 0.29 days per decade. MHWs
frequency appears more influenced by interannual variability, for example, in 2005, when
1525 MHWs events occurred, considerably above the mean of 362.77 events per year
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(Table 3). However, a not statistically significant increase in the mean intensity of these
events was observed, which was unexpected, as significant and positive SST trends in
the Caribbean were reported for the 1960–2005 and 2005–2050 periods due to climate
warming [60]. As suggested by a reviewer, we investigated the possible reasons behind the
lack of a significant trend in the MHWs mean intensity. We found small differences between
the probability density functions computed for the first and second 15-year periods of our
time series using only SST values that were part of an MHW event. These results indicate
small temporal differences in extreme SST data.
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Figure 3. Caribbean Sea annual time series of MHWs properties: (A) spatially averaged mean
intensity, (B) frequency (sum of events per year from all Caribbean nodes), and (C) spatially averaged
mean duration. Time series from CESM2 model (dark red), 5MMM (gray), and for NOAA OISST V2
(black). Trends estimated over the 1983–2012 period are shown in each panel for each time series in
units/decade. * indicates significant trends at the 99% level.
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Table 3. MHWs properties for the 1983–2012 period in the Caribbean Sea from the OISSTV2, 5MMM,
and CESM2 annual time series. Intensity and duration from spatially averaged annual values. Fre-
quency from the sum of events per year from all Caribbean nodes. Metrics include the 30-year mean,
standard deviation (Std), maximum (MaV) and minimum (MiV) values, and their year of occurrence.

Intensity (◦C) Frequency (Total Events) Duration (Days)

OISST 5MMM CESM2 OISST 5MMM CESM2 OISST 5MMM CESM2

Mean 0.94 0.41 0.59 362.77 244.01 208.73 7.96 15.97 14.71
Std 0.06 0.02 0.06 409.29 291.19 259.84 1.88 7.97 6.48

MaV 1.08 0.45 0.80 1525 929 888 14.25 38.50 31.35
Year MaV 2005 1986 2007 2005 2004 1988 2010 2005 2008

MiV 0.83 0.37 0.51 7.00 0.00 0.00 5.55 5.00 5.95
Year MiV 2009 2006 2009 1991 1985 1986 1989 1999 1998

We assessed the CMIP6 model’s (historical run) ability to reproduce the CAR spa-
tially averaged MHWs properties observed in the same period. Trends from the 5MMM
ensemble and CESM2 model indicate an increase in the MHWs frequency and duration
of 53.70 ± 51.84 to 203.63 ± 49.26 events and 0.92 ± 0.83 to 3.08 ± 1.61 days per decade,
respectively. Furthermore, mean intensity trends were also insignificant (0.002 ± 0.003 and
0.005 ± 0.014 ◦C per decade), as found in the OISST V2 dataset. Therefore, the 5MMM and
CESM intensity, duration, and frequency trends were similar to the observed values and
not statistically different (except for the frequency trend between OISST and CESM2).

The models show a smaller mean in the number of annual MHWs (208.73 and 244.01
events per year) when compared to observations (362.77 events per year). Similarly, the
models-averaged intensity (0.41 and 0.59 ◦C) is about half the observed mean (0.94 ◦C). In
contrast, the MHWs mean duration in the models (15.97 and 14.71 days) is about twice
the mean observed duration (7.96 days). The 5MMM and CESM2 time series show a
higher interannual variability in the annual MHWs duration (Figure 3), as shown by the
comparison between the model’s range (33.5 and 25.4 days, respectively) and the OISST
range (8.70 days in Table 3). The opposite is observed in the frequency, where the model’s
interannual variability (range between maximum and minimum yearly values) is smaller
than in the observed frequency range. Results from other models used to construct the
5MMM can be observed in Table S2 from the Supplementary Material.

3.2.2. Interannual and Sub Annual Variability

With the spatially averaged monthly time series from OISST, we assessed the interan-
nual variability and seasonality of the MHWs metrics in the CAR for the 1983–2012 period
(Figure 4). MHWs are frequent in the CAR throughout most months; however, there are
also months and longer periods (e.g., 9 months in 1991) where they are absent.

Interannual differences in the MHW metrics in the CAR were assessed using two
15-year periods: 1983–1997 and 1998–2012. Results indicate small differences in the monthly
mean intensity with values of 0.97 and 1.00 ◦C, respectively. In contrast, the monthly mean
duration and number of events in the 1998–2012 period are 8.08 days and 53.53 events
per month, which is higher than in the former period, with differences of 1.68 days and
42.86 events per month, respectively (Figure 4). These results are coherent with the trends
reported in Figure 3. Furthermore, 2010 was a year with many MHWs of long duration
in the CAR (Figure 4), which also can be seen in the metrics’ annual means (Figure 3). A
similar behavior was seen in 2005, a warm year in this region with severe reported impacts
in coral blenching [10] and the hurricane season [63].



Remote Sens. 2024, 16, 2357 11 of 22

Remote Sens. 2024, 16, x FOR PEER REVIEW 12 of 23 
 

 

applied in this paper to define MHWs (Section 2.1), where the threshold used to define 
these events varies seasonally. Still, MHWs seem to be more intense and frequent during 
the warm–rainy season in the CAR, while they show a larger duration at the end of boreal 
winter. 

 
Figure 4. Monthly MHWs metrics in the Caribbean Sea from the NOAA OISST V2 dataset to assess 
inter-annual and sub annual variability. Columns represent mean intensity (°C) (A,D), frequency 
(events per month) (B,E), and duration (days) (C,F), respectively. First row shows the monthly 
means (A–C). Second row shows monthly metrics distribution in the 1983–2012 period (D–F). 

3.2.3. Spatial Variability 
Additionally, a spatial assessment of the MHWs metrics was conducted during the 

baseline period (1983–2012), using monthly means computed from the OISST database. 
This is important to better understand regional oceanic and atmospheric processes that 
might affect sea surface temperature (SST) and trigger MHWs events in the CAR. This 
spatial assessment was performed using each node’s annual mean but also using the 
means of three months from the two dominant seasons to evaluate variations from the 
annual average. 

The spatial average and standard deviation of MHWs intensity computed from all 
nodes’ annual mean is 1.00 ± 0.12 °C, with nodes’ values between 0.86 and 1.65 °C. The 
dry season (DJF) spatial average is smaller (0.84 ± 0.13 °C), with a range between 0.67 to 
1.41 °C, while the rainy season (SON) spatial average is slightly greater (1.04 ± 0.10 °C), 
with a range between 0.88 to 1.72 °C. Therefore, spatial differences in the nodes’ mean 
intensity in all cases is ~0.8 °C (Figure 5, first row). In addition, more intense events (> 1.32 
°C) are seen in the cooler Guajira upwelling region, with larger spatial differences in the 
dry season (DJF). We speculate that in all cases shown, MHWs in this area would be 
associated with events when the wind stress and Ekman transport offshore relaxes, 
weakening the upwelling of relative colder waters, increasing SST enough to produce an 
MHW. 

The spatial average and standard deviation of MHWs frequency computed from all 
nodes’ annual mean is 1.86 ± 0.23 events per month, with mean values between 1.17 and 
2.33. Seasonality shows a smaller spatial average in the number of MHWs per month in 

Figure 4. Monthly MHWs metrics in the Caribbean Sea from the NOAA OISST V2 dataset to assess
inter-annual and sub annual variability. Columns represent mean intensity (◦C) (A,D), frequency
(events per month) (B,E), and duration (days) (C,F), respectively. First row shows the monthly means
(A–C). Second row shows monthly metrics distribution in the 1983–2012 period (D–F).

Seasonality is different in the three used metrics. Months with maximum (minimum)
mean intensity are between May and September (October and April), with values ranging
from 1.01 to 1.11 ◦C (0.82 to 1.00 ◦C), with the maximum (minimum) peak in June (January)
(Figure 4A). Therefore, MHWs intensity is greater in the rainy–warm season, while it is
smaller in the dry–cold season. July’s intensity reduction compared to June and August
might be associated to the activation of the Mid-Summer Draft, whose stronger winds
enhances coastal upwelling and vertical mixing, cooling its surface [64]. Monthly averaged
MHWs intensity can be >2 ◦C, as seen in February and April in 1985.

The MHWs mean frequency has higher values in two periods: between May and
June, with a maximum peak of 38 events per month, and in the rainy–warm season from
September to November. Conversely, lower frequency ocurrs in January during the dry–
cold season (Figure 4B). The highest monthly averaged MHWs frequency was 328 events
per month (May of 2005).

The MHWs duration and frequency can be mutually constrained, as the finding of
months with a large number of events implies that the daily duration of these events is
limited. The largest monthly averaged duration of an MHW (March 2010) was 20.72 days;
conversely, in this month, the number of events was 171. Note that this year had a large
number of MHWs events with long duration, as also seen in Figure 3. The MHWs duration
seasonality shows maximum (minimum) values between December and March (May and
August), with values ranging from 7.50 to 8.31 days (6.79 to 7.13 days), with the maxium
peak in March (Figure 4C).

The MHWs metrics in the CAR do not show a strong seasonality, as mean monthly
values ranged from 0.29 ◦C in intensity, 13.8 events per month in frequency, and 1.52 days
in duration (Figure 4 first row). This small seasonality is related to the methodology applied
in this paper to define MHWs (Section 2.1), where the threshold used to define these events
varies seasonally. Still, MHWs seem to be more intense and frequent during the warm–rainy
season in the CAR, while they show a larger duration at the end of boreal winter.
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3.2.3. Spatial Variability

Additionally, a spatial assessment of the MHWs metrics was conducted during the
baseline period (1983–2012), using monthly means computed from the OISST database.
This is important to better understand regional oceanic and atmospheric processes that
might affect sea surface temperature (SST) and trigger MHWs events in the CAR. This
spatial assessment was performed using each node’s annual mean but also using the
means of three months from the two dominant seasons to evaluate variations from the
annual average.

The spatial average and standard deviation of MHWs intensity computed from all
nodes’ annual mean is 1.00 ± 0.12 ◦C, with nodes’ values between 0.86 and 1.65 ◦C. The dry
season (DJF) spatial average is smaller (0.84 ± 0.13 ◦C), with a range between 0.67 to 1.41 ◦C,
while the rainy season (SON) spatial average is slightly greater (1.04 ± 0.10 ◦C), with a
range between 0.88 to 1.72 ◦C. Therefore, spatial differences in the nodes’ mean intensity
in all cases is ~0.8 ◦C (Figure 5, first row). In addition, more intense events (> 1.32 ◦C)
are seen in the cooler Guajira upwelling region, with larger spatial differences in the dry
season (DJF). We speculate that in all cases shown, MHWs in this area would be associated
with events when the wind stress and Ekman transport offshore relaxes, weakening the
upwelling of relative colder waters, increasing SST enough to produce an MHW.
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Figure 5. The MHWs spatial behavior from the NOAA OISST V2 dataset in the CAR. Columns indi-
cate the annual, dry (DJF), and rainy (SON) seasons assessed from each node’s mean in the 1983–2012
period. Rows indicate mean intensity (◦C), frequency (events per month), and duration (days).

The spatial average and standard deviation of MHWs frequency computed from all
nodes’ annual mean is 1.86 ± 0.23 events per month, with mean values between 1.17 and
2.33. Seasonality shows a smaller spatial average in the number of MHWs per month in the
dry season (1.76 ± 0.33), while in the rainy season, a larger spatial average in the number of
MHWs per month occurs (2.24 ± 0.36). In the three cases (Figure 5, second row), the spatial
range among nodes is 1.16, 1.86, and 1.87 events per month, respectively, exhibiting a weak
zonal pattern with a lower number of events toward the East. Thus, a smaller number
of MHWs occur in the Granada and Venezuela Basins when compared to the rest of the
Caribbean Sea.

Conversely, the MHWs duration (Figure 5, third row), shows a larger spatial average and
standard deviation when computed from all nodes’ annual mean (11.31 ± 2.11 days) and dry
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season mean (10.44 ± 2.39 days) when compared to the rainy season (9.90 ± 1.62 days). The
MHWs duration spatial range among nodes is largest in the annual mean (6.56 to 20.17 days)
than in the two seasons assessed, which have a similar range (~11 days). A weak spatial zonal
pattern can be seen, with longer-lasting events to the East. Therefore, in the Granada and
Venezuela Basins, MHWs are less frequent but last longer. The seasonality of all the MHWs
metrics in the spatial average are coherent with the first row of Figure 4.

The spatial assessment of the MHWs metrics was also performed using the CESM2
and 5MMM models to assess their ability to accurately reproduce the annual and seasonal
spatial behavior (Figures S1 and S2, Supplementary Material. Other models’ results shown
in Figures S3–S6). When compared to observations (Figure 5), both models, namely CESM2
and 5MMM, underestimated the mean annual and seasonal intensity, with nodes’ values
ranging from 0.47 to 0.92 ◦C in the former and 0.34 to 0.58 ◦C in the latter. Furthermore,
seasonal differences are smaller in CESM2 but nearly inexistant in 5MMM, which overall
shows a poorer performance in this metric. However, a larger mean intensity can be
observed in the Guajira upwelling region in both models, as also seen in observations.

Both models also underestimate the average number of events in the annual and
seasonal frequency, ranging from 0.41 to 2.27 events per month in the CESM2 model and
0.42 to 2.67 events per month in the 5MMM model. However, both models correctly capture
the larger number of events per month during the rainy season when compared to the dry
season. Overall, 5MMM shows better performance in this metric.

The least accurate performance is in the MHWs duration, as both CESM2 and 5MMM
models largely overestimate events’ duration mean in all three cases. The MHWs mean
duration ranges from 14.12 to 68.33 days in the CESM2 model and 10.01 to 83.33 days in
the 5MMM model when the annual and two seasons’ results were assessed. Moreover,
seasonal and spatial differences do not follow observations (Figure 5, third row), as the
models do not reproduce the weak spatial pattern in the MHWs frequency and duration,
where MHWs in the eastern Caribbean are less frequent but with larger duration.

3.2.4. MHWs Events

We further investigated MHWs months to assess individual events in the CAR based
on the NOAA OISST V2 dataset. We selected two extreme months from the baseline period
(1983–2012). First, we assessed the month with the highest mean intensity (2.18 ◦C in
February 1985) (Figure 4D). In this month, the largest mean SST anomaly occurred in the
node located at 12.5 ◦N and 69.5 ◦W (2.32 ◦C). Only a neighbor node also recorded MHWs
in this month but with a lower mean SST anomaly (2.03 ◦C). This result indicates that
MHWs can evolve and impact very small areas, reaching high SST anomalies (Figure 6A).

The 1985 daily time series indicates that this extreme MHW had a 6-day duration (SST
above the daily 90th percentile threshold—Figure 6B). Note that in this node, three short
MHWs occurred in 1985. The other two MHW occurred at the end of April and in June,
with a mean intensity (duration) of 2.38 ◦C (14 days) and 1.83 ◦C (13 days), respectively.
Due to the methodology we used, MHWs do not include the seasonal SST variation, which
can be clearly seen in the threshold time series. We did not include seasonality, as we
want to better understand the events that force MHWs in the CAR. Nonetheless, due to
the seasonal SST variations, less intense MHWs such as the one in June will have a larger
impact, e.g., in the biosphere, than the more intense MHW that occurred at the beginning
of February, as it finally reached the highest SST in 1985 for that node (30.17 ◦C). Therefore,
MHWs that occur in the rainy season (SON), which seems to be more intense and frequent
(Figure 5), will have more devastating impacts on the biosphere (e.g., [10]) but also would
affect the hurricane season that peaks in this time of the year [63].
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Figure 6. Extreme MHWs months in the Caribbean Sea. First row shows February 1985, the month
with maximum mean intensity, while the second row shows March 2010, the month with largest
mean duration. First column shows the mean (A) intensity and (C) duration from the nodes in which
MHWs occur during the month. The white cross indicates the node whose daily SST time series
(black line) is shown in (B,D) for the entire year to highlight seasonal variations. The time series
includes the node’s 30-year climatology (median) and 90th percentile, which is the threshold used to
define MHWs. SST anomalies of the MHWs during the assessed months are highlighted in red, while
other MHWs are visually represented in orange.

Secondly, we selected the month with the longest mean duration (20.72 days in March
2010) (Figure 4F). In contrast, the results show MHWs occurring in nearly all nodes in
the eastern Caribbean, lasting between 10 and 31 days (Figure 6C), which is coherent
with the annual duration shown in Figure 5. MHWs with a larger duration occur in the
north-eastern Caribbean, which coincides with an area of severe coral blenching reported
in the warm 2005 [10].

The 2010 daily time series from one of the nodes with the longest duration (13.5 ◦N,
69.5 ◦W) shows that the same MHW lasted 50 days, from February 20 to April 11 (Figure 6D).
This allows us to explain a limitation in the methodology used in Figure 4, where we report
the MHWs monthly mean duration, which does not account for MHWs that occur in
more than one month. In this node and year, eight MHWs occurred with a duration
(mean intensity) between 11 to 51 days (0.81 ◦C to 1.10 ◦C). Note again the importance of
seasonality in the impacts, as the MHW in September, with a small intensity, reached the
highest SST in 2010 for that node (30.18 ◦C). Additionally, it seems that seasonality also
affects MHWs duration, as in the colder first quarter of the year, SST anomalies above the
threshold last for more days. This behavior is also seen in Figures 4C and 5 in the third
row. Overall, 2010 was a warm year, as most SST time series were above climatology in the
assessed node.

A comparison of the MHWs coverage and other metrics in February 1985 and March
2010 shows how differently these events can evolve and impact the CAR. In February 1985,
an intense MHW locally impacted a small region north of the Venezuela coast. Also, during
this year, three short but intense MHWs affected this node. In contrast, many MHWs
affected most of the eastern Caribbean with a mild intensity in March 2010. Note how, in
this year, duration decreased from east to west, which would indicate a forcing entering
the Caribbean from the northern end of the Lesser Antilles toward the west, producing
the MHWs. This basin-wide warming, which was observed through the first half of the
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year, seems to be linked to the tropical North Atlantic. We speculate that MHWs with large
coverage in the Caribbean Sea are probably linked to seasonal and interannual variations
of the Atlantic Warm Pool [65], whose intensity and area variations are linked to El Niño
Southern Oscillation and North Atlantic Oscillation [66].

A reviewer suggested that the February 1985 MHW event might be spurious, as it
was registered in only two nodes. This could be probably related to an OISST dataset
limitation, as it is known that SST satellite products are less reliable close to the coasts [67].
To assess this sugestion, we analyzed the 10 most intense MHWs events. Results revealed
that these intense events typically persist less than 12 days, with temperature anomalies
>2 ◦C, with a spatial concentration within the 11.5–12.5◦N and 69.5–73.5◦W coordinates, in
a region of active coastal upwelling. Some of these events appear to cover a small number
of nodes, including an event in June 2011, when better SST data were available. Therefore,
we conclude that the low-coverage February 1985 MHW event is probably a real event
registered by the OISST dataset.

3.3. MHWs Projections for the 21st Century

CMIP6 model simulations were used to analyze expected climate change impacts
to the CAR MHWs from 2040 to 2100, differentiating the range into two 30-year periods
representing mid-century (2041–2070) and end-century (2071–2100) conditions. Trends in
the MHWs metrics (mean intensity, frequency, and mean duration) were assessed under
two SSPs scenarios, following the same methodology used to assess the 1983–2012 reference
period. In this assessment, we prioritized the description of the 5MMM results because
that dataset better reproduces the observed SST behavior when compared to CESM2, with
lower normalized standard deviation and RMSE but higher correlation (Table 2, Figure 2).
Furthermore, 5MMM better reproduces the OISST spatial and seasonal variability when
compared to CESM2 (Section 3.2.1, Figure 3) (Section 3.2.3). However, results from the
CESM2 are also included in Table 4.

Table 4. MHWs properties for mid-century (2041–2070) and end-century (2071–2100) conditions
in the Caribbean Sea from the 5MMM and CESM2 models annual time series. Intensity and du-
ration from spatially averaged annual values. Frequency from the sum of events per year from
all Caribbean nodes. Metrics include the 30-year mean, standard deviation (Std), and the yearly
maximum value (MaV).

SSP245

2041–2070 2071–2100

Intensity (◦C) Frequency
(Total Events) Duration (Days) Intensity (◦C) Frequency

(Total Events) Duration (Days)

5MMM CESM2 5MMM CESM2 5MMM CESM2 5MMM CESM2 5MMM CESM2 5MMM CESM2

Mean 0.72 0.78 417.93 291.53 85.62 90.48 1.18 1.34 237.35 200.17 101.92 110.58
Std 0.18 0.34 105.82 122.40 10.61 19.80 0.12 0.32 25.54 12.20 7.54 4.60

MaV 1.05 1.71 644.20 625.00 103.64 109.81 1.40 1.89 302.40 238.00 117.30 115.00

SSP585

2041–2070 2071–2100

Mean 1.10 1.29 299.47 239.40 95.66 98.30 2.23 2.75 196.71 186.79 111.84 130.56
Std 0.31 0.51 94.85 100.47 12.42 16.51 0.34 0.48 2.82 16.79 5.94 4.57

MaV 1.53 2.14 510.49 604.00 116.00 115.33 2.69 3.56 204.60 198.00 118.33 154.22

The MHWs mean intensity is projected to increase 0.146 (0.368) ◦C per decade in the
2041–2100 period under the SSP245 (SSP585) scenario (Figure 7A). Trends are larger for
the end-century period (0.370 ◦C per decade) than for the mid-century period (0.322 ◦C
per decade) under the SSP585 scenario. Conversely, mean intensity trends are larger for
the mid-century period (0.152 ◦C per decade) than for the end-century period (0.102 ◦C
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per decade) under SSP245, as this scenario reduces atmospheric greenhouse gases in the
second half of the 21st century [68].
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Figure 7. Caribbean Sea annual time series of MHWs metrics under SSP245 (blue) and SSP585 (red)
socioeconomic pathways for the 5MMM ensemble (solid thick lines): (A) spatially averaged mean
intensity, (B) frequency (sum of events per year from all Caribbean nodes), and (C) spatially averaged
mean duration. Dashed lines represent the 95% confidence interval; 1983–2012 is the baseline period
used to calculate the daily SST threshold in each node and used to define MHWs.

The MHWs frequency shows negative trends regardless of the SSP scenario considered
(Figure 7B). In the 2040–2100 period, a greater reduction is projected under SSP245 (−57.79
events per decade) when compared to SSP585 scenario (−37.39 events per decade). In
both cases, at the end of the century, ~200 total events per year in the entire Caribbean are
expected (~1 annual event per year for each of the 195 nodes). This reduction in the MHWs
frequency is related to the projected increase in the events’ duration. In the 2040–2100
period, positive trends of 5.0 and 5.7 days per year are expected in the mean events’ duration
under the SSP245 and SSP585 scenarios, respectively (Figure 7C). These projections indicate
that for 2100, the mean MHWs duration in the CAR would be ~100 days. Clearly, the
projected MHWs frequency reduces, as the events’ projected duration would stand for over
three months. Note that in both metrics, the 95% confidence interval reduces toward the
end of the century.

These results must be treated with caution for several reasons. First, the MHWs
projected long duration is partially because the 90th percentile threshold used to define
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MHWs is based on the SST conditions during the 1983–2012 period. Second, when we
compared the model and observed the MHWs time series in the 1983–2012 period, we
observed that the models underestimated the mean intensity and frequency, while they
overestimated the mean duration (Figure 3). Therefore, projected MHWs metrics using
climate models should not be interpreted in absolute terms; still, trends are useful to
indicate expected future conditions in the CAR related to these extreme events. Following
this line of thought, the results indicate that MHWs will be nearly permanent and more
intense by the end of the century in the study area, based on the observed SST conditions
from the 1983–2012 baseline period.

We also compared MHWs metrics computed for mid-century and end-century condi-
tions, using both the CESM2 and 5MMM models’ projections in the SSP245 and SSP585
scenarios (Table 4). These results can be compared to the MHWs metrics observed for the
1983–2012 period (Table 3).

In both scenarios, the mean intensity is higher in the 2071–2100 period when compared
to the 2041–2070 period. More intense events are projected in the SSP585 scenario, with
mean intensity values up to 2.2 and 2.8 ◦C in the end-century conditions for the 5MMM
and CESM2 models, respectively. In all cases, CESM2 projects more intense MHWs than
the 5MMM. Note that some years can reach mean intensity values of 2.7 and 3.6 ◦C in both
models (SSP585). This indicates that the projected mean MHWs intensity in the CAR can
be over twice the observed mean intensity in the 1983–2012 period (0.94 ◦C in Table 3), with
years that might reach SST anomalies >3 ◦C with respect to the reference period.

In all cases, mean duration is larger in the SSP585 scenario when compared to the
SSP245 as well as in the end-century when compared to mid-century period (Table 4).
Conversely, annual dispersion (standard deviation) is smaller in all cases in the end-century
than in the mid-century conditions. CESM2 in all cases projects a larger mean MHWs
duration when compared to the 5MMM ensemble. In the 1983–2012 reference period, both
models nearly doubled the observed MHWs duration (Table 3); still, the models project
that for 2071–2100, the mean MHWs duration in CAR will be over six times the modeled
mean duration in the reference period.

As a consequence of the large increase in the mean MHWs duration, the frequency
will decrease with time, as also seen in the extreme radiative scenario when compared to
the SSP245 pathway (Table 4). Similarly, as CESM2 projects larger mean durations, it also
projects less frequent events when compared to 5MMM.

Overall, the comparison between the 5MMM and CESM2 models shows differences in
their MHWs metrics projections, with CESM2 indicating more intense, less frequent, and
longer-lasting events, particularly under the SSP585 scenario.

4. Summary and Final Remarks

In this study, we assessed MHWs in the CAR during the 1983–2012 period, using
the NOAA OISST V2 daily SST dataset. MHWs were assessed based on three metrics,
namely mean intensity, mean duration, and its frequency, which were used to describe
their interannual, annual, and sub annual variability as well as their spatial behavior from
the annual mean and the dry and rainy seasons. In addition, cases from two extreme
months (higher mean intensity and longest mean duration) were included to show how
different these events can be in the region. In this study, SST seasonality did not contribute
to MHW events.

To evaluate future MHW events in the Caribbean Sea and their relationship with global
warming, we used results from 19 CMIP6 models during the historical period (1983–2012)
and 2014–2100 projections under two socioeconomic pathways (SSP245 and SSP585). Daily
SST time series from the models’ historical period were compared to observations using a
Taylor diagram (Figure 2). The best results were obtained from a multi-model mean using
the five best-performing models and by the CESM2 model. Therefore, these results are
used through the paper.
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In the 1983–2012 period, mean duration and frequency from the observed MHWs
showed significant trends but not in their intensity. The latter was unexpected, as SST
trends in the CAR were reported for the 1960–2005 and 2005–2050 periods [60]. However,
this behavior seems to be related to a small difference in the probability density function
of extreme SST values (those included in the MHWs events) when comparing the first
and second 15-year period of the 1983–2012 time span. In the same period as the observa-
tions, the models underestimated intensity and frequency while overestimating duration;
however, they can show also significant trends in mean duration and frequency (Figure 3).
In addition, the models showed limitations in reproducing the seasonality of the MHWs
metrics (Figures S1 and S2, Supplementary Material).

Some studies have shown that the coarse resolution of GCMs leads to longer-lasting
MHWs due an underestimation of SST anomalies related to the ability to reproduce small-
scale features, producing spatially and temporally smoothed SST fields [6,21]. This weak-
ness is preserved in the CMIP6 models despite the improvements in resolution.

Observations in the 1983–2012 period also showed large interannual and monthly
variability in the MHWs metrics (Figure 4). For instance, 2010 was a year with many
long-lasting MHWs, while years such as 1991 had nine consecutive months with no events.
Interannual variability was largest in the MHWs frequency (standard deviation in Table 3).

Observed MHWs seasonality was weak and different in the three used metrics. The
rainy season showed more intense and frequent MHWs, while the dry (cold and windy)
season had longer-lasting MHWs, which corresponds to the inverse relationship between
frequency and duration (Figures 4 and 5). As was also supported by two cases (Figure 6),
MHWs in the CAR can be very different in their spatial coverage as well as in their mean
intensity and duration. With these cases, it was shown that more intense and frequent
MHWs in the rainy season will produce larger impacts, as this period coincides with the
warmer months in the year.

Limited studies have been conducted about MHWs in the Caribbean Sea [11,32] using
the same methodology we used, reporting mean duration trends of 0.20 days per decade,
while our results showed a higher positive significant trend of 1.47 ± 0.29 days per decade.
However, ref. [32] considered a longer time frame (1981–2018), evaluating specific coral
reef locations in the CAR. Although the other MHWs metrics we used are not directly
comparable to the results from [32], they also concluded that MHWs in recent decades
have increased in their occurrence and duration (see Figure 3) [6,32]. Furthermore, the
spatially averaged MHWs values from 1983 to 2012 obtained in our study (1.00 ± 0.12 ◦C
for mean intensity, 1.86 ± 0.23 events per month in frequency, and 11.31 ± 2.11 days for
mean duration) are in the limits of the reported values in the CAR from a global assessment
performed by [11].

In the CAR, significant positive trends are projected for mean duration and intensity
and negative trends for frequency, regardless of the radiative scenario used; however, the
trends are larger in the SSP585 scenario (Figure 7). The results obtained are similar to other
global ocean studies relying on observations and CMIP5/CMIP6 GCMs [8,12,21]. Note
that due to the increase in intensity with time, by the end of the 21st century, MHWs could
reach anomalies >3 ◦C, with respect to the threshold (90th percentile) established in the
1983–2012 period (Table 4).

Models’ projections indicate that by the end of the 21st century, actual extreme MHWs
conditions in the CAR could be a regular condition, as the mean event duration will largely
increase (frequency reduction). Moreover, mean intensity will be over twice the intensity
observed in the 1983–2012 reference period. These conditions will probably have strong
implications for the ocean biosphere and affect the hurricane season, as already seen during
warm years (e.g., [10,63]. Nonetheless, MHWs projections are sensitive to the radiative
scenario, and as seen in the SSP245, MHWs are expected to be less intense and with shorter
duration than in the SSP585 pathway. Therefore, efforts to reduce atmospheric greenhouse
gases should continue and strengthen.

Thus, the main important conclusions can be summarized in these points:
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- CMIP6 models showed significant trends in the spatially averaged MHWs frequency
and mean duration but not in mean intensity during 1983–2012;

- MHWs are more intense and frequent in warm–rainy months and longer-lasting in
late boreal winter;

- MHWs conditions at the beginning of the century will be nearly permanent in the
Caribbean’s future.

Finally, these results highlight the importance of continued study of MHWs in the
CAR since in this region, there are a vast number of coral reefs, which are home to about
25% of all marine fish species [69], and as such, they are an important spotlight for fishing
and coastal protection [70]. These species are very sensitive to changes in temperature,
light, ultraviolet radiation, salinity, pH, and excessive sedimentation, being strongly af-
fected by changes in the thermal environment and other stressors, including fishing and
pollution [70]. The projected increase in duration and intensity of MHWs could cause
a dramatic shift in the composition and functioning of Caribbean coral reef ecosystems,
putting them in danger of coral bleaching, with a high risk of disappearance [32]. However,
there are several other factors to consider regarding the impact of climate change on coral
reefs, such as inter-annual oscillations like the ENSO and interactions between ecological
communities, among others [71–73]. How have coral reefs been impacted, and how can
MHWs affect these ecosystems in the CAR? In what manner do MHWs affect coral reefs
in the CAR under different protection regimes? How are other factors, such as anthro-
pogenic activity, affecting or not affecting the reefs? These are questions that are not yet
completely answered.

Understanding how MHWs can evolve in the future in the CAR holds significance for
effective marine resource management, necessitating a thorough comprehension of their
drivers. Strategic decisions in resource management often rely on climate forecasts, with
ecosystem-based approaches requiring consideration of environmental stressors [74]. The
results from this study can be used as a starting point for understanding these questions
and help stakeholders to make good decisions to protect the Caribbean environment in
the future.
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spatial behavior from the GFDL-ESM4 model in the CAR; Figure S5: MHWs spatial behavior from
the NorESM2-LM model in the CAR; Figure S6: MHWs spatial behavior from the NorESM2-MM
model in the CAR; Table S1: Seasonal cycle assessment; Table S2: MHWs properties for the 1983–2012
period in the Caribbean Sea from OISSTV2, CESM2, ACCESS-ESM1-5, GFDL-ESM4, NorESM2-LM
and NorESM2-MM annual time series.
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