Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Machuca, Guillermo
dc.contributor.author Staforelli, Juan
dc.contributor.author Rondanelli-Reyes, Mauricio
dc.contributor.author Garces, Rene
dc.contributor.author Contreras-Trigo, Braulio
dc.contributor.author Tapia, Jorge
dc.contributor.author Sanhueza, Ignacio
dc.contributor.author Jara, Anselmo
dc.contributor.author Lamas, Iván
dc.contributor.author Troncoso, Jose Max
dc.contributor.author Coelho, Pablo
dc.date.accessioned 2024-09-26T00:31:38Z
dc.date.available 2024-09-26T00:31:38Z
dc.date.issued 2022-12
dc.identifier.issn 2304-8158
dc.identifier.uri https://repositorio.uss.cl/handle/uss/12469
dc.description Funding Information: The authors acknowledge financial support to FONDEFid19i10233 from ANID. The author G. Machuca acknowledges financial support from ANID FONDECYT Postdoctorado 3200636. The author M.R.-R. acknowledges financial support from VRID UDEC 2021000335MUL. The author J.T. acknowledges financial support from ANID FONDECYT Postdoctorado 3220561. The author A.J. acknowledges financial support from ANID FONDECYT Postdoctorado 3210436. The author P.C. acknowledges financial support from ANID FONDECYT Iniciación 11200992. Publisher Copyright: © 2022 by the authors.
dc.description.abstract Honey adulteration is a common practice that affects food quality and sale prices, and certifying the origin of the honey using non-destructive methods is critical. Guindo Santo and Quillay are fundamental for the honey production of Biobío and the Ñuble region in Chile. Furthermore, Guindo Santo only exists in this area of the world. Therefore, certifying honey of this species is crucial for beekeeper communities—mostly natives—to give them advantages and competitiveness in the global market. To solve this necessity, we present a system for detecting adulterated endemic honey that combines different artificial intelligence networks with a confocal optical microscope and a tunable optical filter for hyperspectral data acquisition. Honey samples artificially adulterated with syrups at concentrations undetectable to the naked eye were used for validating different artificial intelligence models. Comparing Linear discriminant analysis (LDA), Support vector machine (SVM), and Neural Network (NN), we reach the best average accuracy value with SVM of 93% for all classes in both kinds of honey. We hope these results will be the starting point of a method for honey certification in Chile in an automated way and with high precision. en
dc.language.iso eng
dc.relation.ispartof vol. 11 Issue: no. 23 Pages:
dc.source Foods
dc.title Hyperspectral Microscopy Technology to Detect Syrups Adulteration of Endemic Guindo Santo and Quillay Honey Using Machine-Learning Tools en
dc.type Artículo
dc.identifier.doi 10.3390/foods11233868
dc.publisher.department Facultad de Ciencias de la Naturaleza
dc.publisher.department Facultad de Ingeniería, Arquitectura y Diseño


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem