Temporalmente, el archivo digital asociado a esta publicación, no se encuentra disponible. Para más información escribir a [email protected]
Este documento se encuentra disponible en su fuente de origen, si desea acceder al texto completo, puedes hacerlo a continuación:
Autor(es)
Yépez, Santiago; Velásquez, Germán; Torres, Daniel; Saavedra-Passache, Rodrigo; Pincheira, Martin; Cid, Hayleen; Rodríguez-López, Lien; Contreras, Angela; Frappart, Frédéric; Cristóbal, Jordi; Pons, Xavier; Flores, Neftali; Bourrel, Luc |
ISSN:
2072-4292 |
Idioma:
eng |
Fecha:
2024-01 |
Tipo:
Artículo |
Revista:
Remote Sensing |
Datos de la publicación:
vol. 16 Issue: no. 2 Pages: |
DOI:
10.3390/rs16020427 |
Descripción:
Publisher Copyright: © 2024 by the authors. |
Resumen:
This study aims to develop and implement a methodology for retrieving bio-optical parameters in a lagoon located in the Biobío region, South-Central Chile, by analyzing time series of Landsat-8 OLI satellite images. The bio-optical parameters, i.e., chlorophyll-a (Chl-a, in mg·m−3) and turbidity (in NTU) were measured in situ during a satellite overpass to minimize the impact of atmospheric distortions. To calibrate the satellite images, various atmospheric correction methods (including ACOLITE, C2RCC, iCOR, and LaSRC) were evaluated during the image preprocessing phase. Spectral signatures obtained from the scenes for each atmospheric correction method were then compared with spectral signatures acquired in situ on the water surface. In short, the ACOLITE model emerged as the best fit for the calibration process, reaching R2 values of 0.88 and 0.79 for Chl-a and turbidity, respectively. This underlies the importance of using inversion models, when processing water surfaces, to mitigate errors due to aerosols and the sun-glint effect. Subsequently, reflectance data derived from the ACOLITE model were used to establish correlations between various spectral indices and the in situ data. The empirical retrieval models (based on band combinations) yielding superior performance, with higher R2 values, were subjected to a rigorous statistical validation and optimization by applying a bootstrapping approach. From this process the green chlorophyll index (GCI) was selected as the optimal choice for constructing the Chl-a retrieval model, reaching an R2 of 0.88, while the red + NIR spectral index achieved the highest R2 value (0.79) for turbidity analysis, although in the last case, it was necessary to incorporate data from several seasons for an adequate model training. Our analysis covered a broad spectrum of dates, seasons, and years, which allowed us to search deeper into the evolution of the trophic state associated with the lake. We identified a striking eight-year period (2014–2022) characterized by a decline in Chl-a concentration in the lake, possibly attributable to governmental measures in the region for the protection and conservation of the lake. Additionally, the OLI imagery showed a spatial pattern varying from higher Chl-a values in the northern zone compared to the southern zone, probably due to the heat island effect of the northern urban areas. The results of this study suggest a positive effect of recent local regulations and serve as the basis for the creation of a modern monitoring system that enhances traditional point-based methods, offering a holistic view of the ongoing processes within the lake. |
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
El Repositorio Institucional de la Universidad San Sebastián reúne los trabajos académicos y de investigación elaborados por la comunidad universitaria. Contribuye a la visibilidad y difusión, para ser consultados a través de acceso abierto por toda la comunidad nacional e internacional.
El objetivo del Repositorio es almacenar, conservar y entregar en formato electrónico, los resultados del quehacer institucional, permitiendo mayor visibilidad y difusión por medio del acceso abierto y gratuito.