Temporalmente, el archivo digital asociado a esta publicación, no se encuentra disponible. Para más información escribir a [email protected]
Este documento se encuentra disponible en su fuente de origen, si desea acceder al texto completo, puedes hacerlo a continuación:
Autor(es)
Hernandez, Hernan; Baez, Sandra; Medel, Vicente; Moguilner, Sebastian; Cuadros, Jhosmary; Santamaria-Garcia, Hernando; Tagliazucchi, Enzo; Valdes-Sosa, Pedro A.; Lopera, Francisco; OchoaGómez, John Fredy; González-Hernández, Alfredis; Bonilla-Santos, Jasmin; Gonzalez-Montealegre, Rodrigo A.; Aktürk, Tuba; Yıldırım, Ebru; Anghinah, Renato; Legaz, Agustina; Fittipaldi, Sol; Yener, Görsev G.; Escudero, Javier; Babiloni, Claudio; Lopez, Susanna; Whelan, Robert; Lucas, Alberto A.Fernández; García, Adolfo M.; Huepe, David; Caterina, Gaetano Di; Soto-Añari, Marcio; Birba, Agustina; Sainz-Ballesteros, Agustin; Coronel, Carlos; Herrera, Eduar; Abasolo, Daniel; Kilborn, Kerry; Rubido, Nicolás; Clark, Ruaridh; Herzog, Ruben; Yerlikaya, Deniz; Güntekin, Bahar; Parra, Mario A.; Prado, Pavel; Ibanez, Agustin |
ISSN:
1053-8119 |
Idioma:
eng |
Fecha:
2024-07-15 |
Tipo:
Artículo |
Revista:
NeuroImage |
Datos de la publicación:
vol. 295 Issue: Pages: |
DOI:
10.1016/j.neuroimage.2024.120636 |
Descripción:
Publisher Copyright: © 2024 The Author(s) |
Resumen:
Diversity in brain health is influenced by individual differences in demographics and cognition. However, most studies on brain health and diseases have typically controlled for these factors rather than explored their potential to predict brain signals. Here, we assessed the role of individual differences in demographics (age, sex, and education; n = 1298) and cognition (n = 725) as predictors of different metrics usually used in case-control studies. These included power spectrum and aperiodic (1/f slope, knee, offset) metrics, as well as complexity (fractal dimension estimation, permutation entropy, Wiener entropy, spectral structure variability) and connectivity (graph-theoretic mutual information, conditional mutual information, organizational information) from the source space resting-state EEG activity in a diverse sample from the global south and north populations. Brain-phenotype models were computed using EEG metrics reflecting local activity (power spectrum and aperiodic components) and brain dynamics and interactions (complexity and graph-theoretic measures). Electrophysiological brain dynamics were modulated by individual differences despite the varied methods of data acquisition and assessments across multiple centers, indicating that results were unlikely to be accounted for by methodological discrepancies. Variations in brain signals were mainly influenced by age and cognition, while education and sex exhibited less importance. Power spectrum activity and graph-theoretic measures were the most sensitive in capturing individual differences. Older age, poorer cognition, and being male were associated with reduced alpha power, whereas older age and less education were associated with reduced network integration and segregation. Findings suggest that basic individual differences impact core metrics of brain function that are used in standard case-control studies. Considering individual variability and diversity in global settings would contribute to a more tailored understanding of brain function. |
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
El Repositorio Institucional de la Universidad San Sebastián reúne los trabajos académicos y de investigación elaborados por la comunidad universitaria. Contribuye a la visibilidad y difusión, para ser consultados a través de acceso abierto por toda la comunidad nacional e internacional.
El objetivo del Repositorio es almacenar, conservar y entregar en formato electrónico, los resultados del quehacer institucional, permitiendo mayor visibilidad y difusión por medio del acceso abierto y gratuito.