Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Rodríguez López, Lien
dc.contributor.author Alvarez, Lisandra Bravo
dc.contributor.author Duran-Llacer, Iongel
dc.contributor.author Ruiz-Guirola, David E.
dc.contributor.author Montejo-Sánchez, Samuel
dc.contributor.author Martínez-Retureta, Rebeca
dc.contributor.author López Morales, Ernesto José
dc.contributor.author Bourrel, Luc
dc.contributor.author Frappart, Frederic
dc.contributor.author Urrutia, Roberto
dc.date.accessioned 2024-11-03T13:00:02Z
dc.date.available 2024-11-03T13:00:02Z
dc.date.issued 2024-09
dc.identifier.issn 2072-4292
dc.identifier.other Mendeley: f4a2b311-4ce2-3e5e-a445-39ce0e8d02ee
dc.identifier.uri https://repositorio.uss.cl/handle/uss/14097
dc.description Publisher Copyright: © 2024 by the authors.
dc.description.abstract This study examines the dynamics of limnological parameters of a South American lake located in southern Chile with the objective of predicting chlorophyll-a levels, which are a key indicator of algal biomass and water quality, by integrating combined remote sensing and machine learning techniques. Employing four advanced machine learning models (recurrent neural network (RNNs), long short-term memory (LSTM), recurrent gate unit (GRU), and temporal convolutional network (TCNs)), the research focuses on the estimation of chlorophyll-a concentrations at three sampling stations within Lake Ranco. The data span from 1987 to 2020 and are used in three different cases: using only in situ data (Case 1), using in situ and meteorological data (Case 2), using in situ, and meteorological and satellite data from Landsat and Sentinel missions (Case 3). In all cases, each machine learning model shows robust performance, with promising results in predicting chlorophyll-a concentrations. Among these models, LSTM stands out as the most effective, with the best metrics in the estimation, the best performance was Case 1, with R2 = 0.89, an RSME of 0.32 µg/L, an MAE 1.25 µg/L and an MSE 0.25 (µg/L)2, consistently outperforming the others according to the static metrics used for validation. This finding underscores the effectiveness of LSTM in capturing the complex temporal relationships inherent in the dataset. However, increasing the dataset in Case 3 shows a better performance of TCNs (R2 = 0.96; MSE = 0.33 (µg/L)2; RMSE = 0.13 µg/L; and MAE = 0.06 µg/L). The successful application of machine learning algorithms emphasizes their potential to elucidate the dynamics of algal biomass in Lake Ranco, located in the southern region of Chile. These results not only contribute to a deeper understanding of the lake ecosystem but also highlight the utility of advanced computational techniques in environmental research and management. en
dc.language.iso eng
dc.relation.ispartof vol. 16 Issue: no. 18 Pages: 3401
dc.source Remote Sensing
dc.title Leveraging Machine Learning and Remote Sensing for Water Quality Analysis in Lake Ranco, Southern Chile en
dc.title.alternative Aprovechamiento del aprendizaje automático y la teledetección para el análisis de la calidad del agua en el lago Ranco, sur de Chile es
dc.type Artículo
dc.identifier.doi 10.3390/rs16183401
dc.publisher.department Facultad de Ingeniería, Arquitectura y Diseño
dc.publisher.department Facultad de Ingeniería y Tecnología
dc.publisher.department Facultad de Arquitectura, Arte y Diseño


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem