Resumen: We present an analytic study of the Potts model partition function on the Sierpinski and Hanoi lattices, which are self-similar lattices of triangular shape with non integer Hausdorff dimension. Both lattices are examples of non-trivial thermodynamics in less than two dimensions, where mean field theory does not apply. We used and explain a method based on ideas of graph theory and renormalization group theory to derive exact equations for appropriate variables that are similar to the restricted partition functions. We benchmark our method with Metropolis Monte Carlo simulations. The analysis of fixed points reveals information of location of the Fisher zeros and we provide a conjecture about the location of zeros in terms of the boundary of the basins of attraction.