Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Sarabia-Vallejos, Mauricio A.
dc.contributor.author De la Fuente, Scarleth Romero
dc.contributor.author Cohn-Inostroza, Nicolas A.
dc.contributor.author Terraza, Claudio A.
dc.contributor.author Rodríguez-Hernández, Juan
dc.contributor.author Henríquez, Carmen Mabel González
dc.date.accessioned 2025-01-06T05:10:03Z
dc.date.available 2025-01-06T05:10:03Z
dc.date.issued 2024-11-23
dc.identifier.issn 2310-2861
dc.identifier.other Mendeley: f0ec7939-e6a0-36aa-9b4b-f0631974ad89
dc.identifier.uri https://repositorio.uss.cl/handle/uss/19023
dc.description.abstract The preparation of sophisticated hierarchically structured and cytocompatible hydrogel scaffolds is presented. For this purpose, a photosensitive resin was developed, printability was eval- uated, and the optimal conditions for 3D printing were investigated. The design and fabrication by additive manufacturing of tailor-made porous scaffolds were combined with the formation of sur- face wrinkled micropatterns. This enabled the combination of micrometer-sized channels (100–200 microns) with microstructured wrinkled surfaces (1–3 µm wavelength). The internal pore structure was found to play a critical role in the mechanical properties. More precisely, the TPMS structure with a zero local curvature appears to be an excellent candidate for maintaining its mechanical re- sistance to compression stress, thus retaining its structural integrity upon large uniaxial defor- mations up to 70%. Finally, the washing conditions selected enabled us to produce noncytotoxic materials, as evidenced by experiments using AlamarBlue to follow the metabolic activity of the cells. en
dc.language.iso eng
dc.relation.ispartof vol. 10 Issue: no. 12 Pages: 761
dc.source Gels
dc.title Development of Soft Wrinkled Micropatterns on the Surface of 3D-Printed Hydrogel-Based Scaffolds via High-Resolution Digital Light Processing en
dc.type Artículo
dc.identifier.doi 10.3390/gels10120761
dc.publisher.department Facultad de Ingeniería, Arquitectura y Diseño
dc.publisher.department Facultad de Ingeniería y Tecnología


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem