Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Caviglia, Agustín
dc.contributor.author Espinoza-Muñoz, Nicolás
dc.contributor.author Alvear-Arias, Juan José
dc.contributor.author Galizia, Luciano
dc.contributor.author Guastaferri, Florencia
dc.contributor.author Zimmermann, Rosario
dc.contributor.author Sigaut, Lorena
dc.contributor.author Amodeo, Gabriela
dc.contributor.author González, Carlos
dc.contributor.author Ozu, Marcelo
dc.contributor.author Garate, José Antonio
dc.date.accessioned 2025-03-06T01:30:02Z
dc.date.available 2025-03-06T01:30:02Z
dc.date.issued 2024-12
dc.identifier.issn 0961-8368
dc.identifier.other Mendeley: 609c144e-998e-354f-8c0d-ca7112d014a4
dc.identifier.uri https://repositorio.uss.cl/handle/uss/19090
dc.description Publisher Copyright: © 2024 The Protein Society.
dc.description.abstract Aquaporins (AQPs) are membrane proteins specialized in facilitating water transport across membranes. Mechanical stress is one of the various stimuli that regulate AQPs. Briefly, there are several studies that report a decrease in permeability upon an increase in membrane tension. However, the molecular details of this mechanosensitive (MS) response are still a matter of debate. Our work attempts to close that gap in knowledge by providing evidence of a conformational change that occurs inside the pore of the strawberry aquaporin FaPIP2;1. Via osmotic shock experiments and molecular dynamics (MD) simulations, we found that a residue of loop B, I106, is key to the blocking of the permeation pathway and such a change is almost exclusively found under membrane tensile stress. In detail, osmotic shock experiments exhibited a nonlinear increment in water fluxes for increasing osmolarities, evidencing a decrease in the FaPIP2;1 permeability. MD simulations under membrane tension showed the same trend, with a significant increase in states with a low water permeability. The latter was correlated with a conformational change in I106 that generates a permeation barrier of around 18 kJ mol−1, effectively closing the pore. This work constitutes the first report of a PIP type aquaporin reacting to tensile stress in the membrane. Our findings could pave the way to test whether this conformational change is also responsible for mechanical gating in the other MS aquaporins, both those already reported and those still waiting to be found. en
dc.language.iso eng
dc.relation.ispartof vol. 33 Issue: no. 12 Pages:
dc.source Protein Science
dc.title Membrane tension-dependent conformational change of Isoleucine 106 of loop B diminishes water permeability in FaPIP2;1 en
dc.type Artículo
dc.identifier.doi 10.1002/pro.5204
dc.publisher.department Facultad de Ingeniería, Arquitectura y Diseño
dc.publisher.department Facultad de Ingeniería y Tecnología


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem