Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Fernández, Miguel
dc.contributor.author Alvear-Arias, Juan J.
dc.contributor.author Carmona, Emerson M.
dc.contributor.author Carrillo, Christian
dc.contributor.author Pena-Pichicoi, Antonio
dc.contributor.author Hernandez-Ochoa, Erick O.
dc.contributor.author Neely, Alan
dc.contributor.author Alvarez, Osvaldo
dc.contributor.author Latorre, Ramon
dc.contributor.author Garate, Jose A.
dc.contributor.author Gonzalez, Carlos
dc.date.accessioned 2025-03-06T02:00:03Z
dc.date.available 2025-03-06T02:00:03Z
dc.date.issued 2024-01
dc.identifier.issn 1661-6596
dc.identifier.uri https://repositorio.uss.cl/handle/uss/19095
dc.description Publisher Copyright: © 2023 by the authors.
dc.description.abstract The majority of voltage-gated ion channels contain a defined voltage-sensing domain and a pore domain composed of highly conserved amino acid residues that confer electrical excitability via electromechanical coupling. In this sense, the voltage-gated proton channel (Hv1) is a unique protein in that voltage-sensing, proton permeation and pH-dependent modulation involve the same structural region. In fact, these processes synergistically work in concert, and it is difficult to separate them. To investigate the process of Hv1 voltage sensor trapping, we follow voltage-sensor movements directly by leveraging mutations that enable the measurement of Hv1 channel gating currents. We uncover that the process of voltage sensor displacement is due to two driving forces. The first reveals that mutations in the selectivity filter (D160) located in the S1 transmembrane interact with the voltage sensor. More hydrophobic amino acids increase the energy barrier for voltage sensor activation. On the other hand, the effect of positive charges near position 264 promotes the formation of salt bridges between the arginines of the voltage sensor domain, achieving a stable conformation over time. Our results suggest that the activation of the Hv1 voltage sensor is governed by electrostatic–hydrophobic interactions, and S4 arginines, N264 and selectivity filter (D160) are essential in the Ciona-Hv1 to understand the trapping of the voltage sensor. en
dc.language.iso eng
dc.relation.ispartof vol. 25 Issue: no. 1 Pages:
dc.source International Journal of Molecular Sciences
dc.title Trapping Charge Mechanism in Hv1 Channels (CiHv1) en
dc.type Artículo
dc.identifier.doi 10.3390/ijms25010426
dc.publisher.department Facultad de Ingeniería, Arquitectura y Diseño
dc.publisher.department Facultad de Ingeniería y Tecnología


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem