Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Tamersit, Khalil
dc.contributor.author Kouzou, Abdellah
dc.contributor.author Rodriguez, José
dc.contributor.author Abdelrahem, Mohamed
dc.date.accessioned 2026-02-07T21:30:15Z
dc.date.available 2026-02-07T21:30:15Z
dc.date.issued 2025-01
dc.identifier.issn 2072-666X
dc.identifier.uri https://repositorio.uss.cl/handle/uss/20084
dc.description Publisher Copyright: © 2024 by the authors.
dc.description.abstract Gate dielectrics are essential components in nanoscale field-effect transistors (FETs), but they often face significant instabilities when exposed to harsh environments, such as radioactive conditions, leading to unreliable device performance. In this paper, we evaluate the performance of ultrascaled transition metal dichalcogenide (TMD) FETs equipped with vacuum gate dielectric (VGD) as a means to circumvent oxide-related instabilities. The nanodevice is computationally assessed using a quantum simulation approach based on the self-consistent solutions of the Poisson equation and the quantum transport equation under the ballistic transport regime. The performance evaluation includes analysis of the transfer characteristics, subthreshold swing, on-state and off-state currents, current ratio, and scaling limits. Simulation results demonstrate that the investigated VGD TMD FET, featuring a gate-all-around (GAA) configuration, a TMD-based channel, and a thin vacuum gate dielectric, collectively compensates for the low dielectric constant of the VGD, enabling exceptional electrostatic control. This combination ensures superior switching performance in the ultrascaled regime, achieving a high current ratio and steep subthreshold characteristics. These findings position the GAA-VGD TMD FET as a promising candidate for advanced radiation-hardened nanoelectronics. en
dc.language.iso eng
dc.relation.ispartof vol. 16 Issue: no. 1 Pages:
dc.source Micromachines
dc.title Performance Assessment of Ultrascaled Vacuum Gate Dielectric MoS2 Field-Effect Transistors : Avoiding Oxide Instabilities in Radiation Environments en
dc.type Artículo
dc.identifier.doi 10.3390/mi16010033
dc.publisher.department Facultad de Ingeniería


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem