Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Mohammedi, Ridha Djamel
dc.contributor.author Kouzou, Abdellah
dc.contributor.author Mosbah, Mustafa
dc.contributor.author Souli, Aissa
dc.contributor.author Rodriguez, Jose
dc.contributor.author Abdelrahem, Mohamed
dc.date.accessioned 2026-02-08T03:20:49Z
dc.date.available 2026-02-08T03:20:49Z
dc.date.issued 2024-01
dc.identifier.issn 2076-3417
dc.identifier.uri https://repositorio.uss.cl/handle/uss/20229
dc.description Publisher Copyright: © 2024 by the authors.
dc.description.abstract Over the last decade, flexible alternating current transmission systems (FACTS) have been crucial in ensuring optimal power distribution within modern power systems. A vital component of FACTS devices is the distribution static compensator (DSTATCOM), which is essential for maintaining a reliable power supply. It is commonly used for reactive power compensation, voltage regulation, and harmonic reduction. Determining the appropriate size and placement of DSTATCOMs is vital to ensuring their efficiency. This study introduces the improved gray wolf optimizer (I-GWO), a refined version of the classical gray wolf optimization (GWO) method. The I-GWO incorporates a dimension learning-based hunting (DLH) strategy to preserve population diversity, balance exploration and exploitation, and prevent the premature convergence of classical GWO. In this research, the I-GWO was applied to determine the optimum allocation and sizing of the DSTATCOMs, considering system constraints, including those presented by the intermittent and stochastic nature of the load and renewable energy resources, specifically wind and solar energy. The suggested approach was successfully tested on 33-, 69-, and 85-bus distribution systems and then compared with existing studies. The results demonstrated the I-GWO-based approach’s superiority in terms of reducing power losses, improving voltage profiles, and enhancing voltage stability. en
dc.language.iso eng
dc.relation.ispartof vol. 14 Issue: no. 2 Pages:
dc.source Applied Sciences (Switzerland)
dc.title Allocation and Sizing of DSTATCOM with Renewable Energy Systems and Load Uncertainty Using Enhanced Gray Wolf Optimization en
dc.type Artículo
dc.identifier.doi 10.3390/app14020556
dc.publisher.department Facultad de Ingeniería


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem