Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Tamersit, Khalil
dc.contributor.author Kouzou, Abdellah
dc.contributor.author Rodriguez, José
dc.contributor.author Abdelrahem, Mohamed
dc.date.accessioned 2026-02-08T03:21:34Z
dc.date.available 2026-02-08T03:21:34Z
dc.date.issued 2024-06
dc.identifier.issn 2079-4991
dc.identifier.uri https://repositorio.uss.cl/handle/uss/20240
dc.description Publisher Copyright: © 2024 by the authors.
dc.description.abstract This paper investigates the performance of vacuum gate dielectric doping-free carbon nanotube/nanoribbon field-effect transistors (VGD-DL CNT/GNRFETs) via computational analysis employing a quantum simulation approach. The methodology integrates the self-consistent solution of the Poisson solver with the mode space non-equilibrium Green’s function (NEGF) in the ballistic limit. Adopting the vacuum gate dielectric (VGD) paradigm ensures radiation-hardened functionality while avoiding radiation-induced trapped charge mechanisms, while the doping-free paradigm facilitates fabrication flexibility by avoiding the realization of a sharp doping gradient in the nanoscale regime. Electrostatic doping of the nanodevices is achieved via source and drain doping gates. The simulations encompass MOSFET and tunnel FET (TFET) modes. The numerical investigation comprehensively examines potential distribution, transfer characteristics, subthreshold swing, leakage current, on-state current, current ratio, and scaling capability. Results demonstrate the robustness of vacuum nanodevices for high-performance, radiation-hardened switching applications. Furthermore, a proposal for extrinsic enhancement via doping gate voltage adjustment to optimize band diagrams and improve switching performance at ultra-scaled regimes is successfully presented. These findings underscore the potential of vacuum gate dielectric carbon-based nanotransistors for ultrascaled, high-performance, energy-efficient, and radiation-immune nanoelectronics. en
dc.language.iso eng
dc.relation.ispartof vol. 14 Issue: no. 11 Pages:
dc.source Nanomaterials
dc.title Performance Projection of Vacuum Gate Dielectric Doping-Free Carbon Nanoribbon/Nanotube Field-Effect Transistors for Radiation-Immune Nanoelectronics en
dc.type Artículo
dc.identifier.doi 10.3390/nano14110962
dc.publisher.department Facultad de Ingeniería


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem