Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Hernandez, Jose Ignacio
dc.contributor.author van Cranenburgh, Sander
dc.contributor.author de Bruin, Marijn
dc.contributor.author Stok, Marijn
dc.contributor.author Mouter, Niek
dc.date.accessioned 2026-02-08T03:22:14Z
dc.date.available 2026-02-08T03:22:14Z
dc.date.issued 2025-02
dc.identifier.issn 0033-5177
dc.identifier.other Mendeley: 3608d53e-92bf-32ce-afb6-fe895638e49d
dc.identifier.uri https://repositorio.uss.cl/handle/uss/20249
dc.description Publisher Copyright: © The Author(s) 2024.
dc.description.abstract Several studies examined what drives citizens’ support for COVID-19 measures, but no works have addressed how the effects of these drivers are distributed at the individual level. Yet, if significant differences in support are present but not accounted for, policymakers’ interpretations could lead to misleading decisions. In this study, we use XGBoost, a supervised machine learning model, combined with SHAP (Shapley Additive eXplanations) to identify the factors associated with differences in policy support for COVID-19 measures and how such differences are distributed across different citizens and measures. We use secondary data from a Participatory Value Evaluation (PVE) experiment, in which 1,888 Dutch citizens answered which COVID-19 measures should be imposed under four risk scenarios. We identified considerable heterogeneity in citizens’ support for different COVID-19 measures regarding different age groups, the weight given to citizens’ opinions and the perceived risk of getting sick of COVID-19. Data analysis methods employed in previous studies do not reveal such heterogeneity of policy support. Policymakers can use our results to tailor measures further to increase support for specific citizens/measures. en
dc.language.iso eng
dc.relation.ispartof vol. 59 Issue: no. 1 Pages: 381-409
dc.source Quality and Quantity
dc.title Using XGBoost and SHAP to explain citizens’ differences in policy support for reimposing COVID-19 measures in the Netherlands en
dc.type Artículo
dc.identifier.doi 10.1007/s11135-024-01938-2
dc.publisher.department Facultad de Economía, Negocios y Gobierno


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem