Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Zhang, Han
dc.contributor.author Salzman, Oren
dc.contributor.author Felner, Ariel
dc.contributor.author Ulloa, Carlos Hernández
dc.contributor.author Koenig, Sven
dc.date.accessioned 2026-02-08T03:22:24Z
dc.date.available 2026-02-08T03:22:24Z
dc.date.issued 2024
dc.identifier.issn 2832-9171
dc.identifier.uri https://repositorio.uss.cl/handle/uss/20253
dc.description Publisher Copyright: © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
dc.description.abstract In the multi-objective search problem, a typical task is to compute the Pareto frontier, i.e., the set of all undominated solutions. However, computing the entire Pareto frontier can be very time-consuming, and in practice, we often have limited deliberation time. Therefore, this paper focuses on solving the multi-objective search problem with anytime algorithms, which compute an initial approximate frontier quickly and then work to find more solutions until eventually finding the entire Pareto frontier. Existing work has investigated such anytime algorithms for problem instances with only two objectives. In this paper, we propose Anytime A*pex (AA*pex), which works with any number of objectives. In each iteration of A-A*pex, it runs A*pex, a state-of-the-art approximate multi-objective search algorithm, to compute more solutions. From one iteration to the next, A-A*pex can either reuse its previous search effort or restart from scratch. Our experimental results show that an A-A*pex variant that mixes reusing its search effort and restarting from scratch yields the best runtime performance. We also show that A-A*pex often computes solutions that collectively approximate the Pareto frontier much better than the solutions found by state-of-theart multi-objective search algorithms for short deliberation times. en
dc.language.iso eng
dc.relation.ispartof vol. 17 Issue: no. 1 Pages: 179-187
dc.source The International Symposium on Combinatorial Search
dc.title A-A*pex : Efficient Anytime Approximate Multi-Objective Search en
dc.type Artículo de conferencia
dc.identifier.doi 10.1609/socs.v17i1.31556
dc.publisher.department Facultad de Ingeniería


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem