Mostrar el registro sencillo del ítem
| dc.contributor.author | Araneda, Pablo | |
| dc.contributor.author | Ulloa, Carlos Hernández | |
| dc.contributor.author | Rivera, Nicolás | |
| dc.contributor.author | Baier, Jorge A. | |
| dc.date.accessioned | 2026-02-08T03:22:25Z | |
| dc.date.available | 2026-02-08T03:22:25Z | |
| dc.date.issued | 2024 | |
| dc.identifier.issn | 2832-9171 | |
| dc.identifier.uri | https://repositorio.uss.cl/handle/uss/20254 | |
| dc.description | Publisher Copyright: © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. | |
| dc.description.abstract | Bi-objective search requires computing a Pareto solution set which contains a set of paths. In real-world applications, Pareto solution sets may contain several tens or even hundreds of solutions. For a human user trying to commit to just one of these paths, navigating through a large solution set may become overwhelming, which motivates the problem of computing small, good-quality subsets of Pareto frontiers. This document presents two main contributions. First, we provide a simple formalization of good-quality subsets of a Pareto solution set. For this, we use measure of richness which has been employed in the study of Population Dynamics. Second, we propose Chebyshev BOA*, a variant of BOA* to compute good-quality subset approximations. | en |
| dc.language.iso | eng | |
| dc.relation.ispartof | vol. 17 Issue: no. 1 Pages: 255-256 | |
| dc.source | The International Symposium on Combinatorial Search | |
| dc.title | Finding a Small, Diverse Subset of the Pareto Solution Set in Bi-Objective Search (Extended Abstract) | en |
| dc.type | Artículo de conferencia | |
| dc.identifier.doi | 10.1609/socs.v17i1.31568 | |
| dc.publisher.department | Facultad de Ingeniería |
| Ficheros | Tamaño | Formato | Ver |
|---|---|---|---|
|
No hay ficheros asociados a este ítem. |
|||