Mostrar el registro sencillo del ítem
| dc.contributor.author | Davari, S. Alireza | |
| dc.contributor.author | Azadi, Shirin | |
| dc.contributor.author | Flores-Bahamonde, Freddy | |
| dc.contributor.author | Wang, Fengxinag | |
| dc.contributor.author | Wheeler, Patrick | |
| dc.contributor.author | Rodriguez, Jose | |
| dc.date.accessioned | 2026-02-08T03:22:47Z | |
| dc.date.available | 2026-02-08T03:22:47Z | |
| dc.date.issued | 2024 | |
| dc.identifier.issn | 0885-8993 | |
| dc.identifier.other | Mendeley: 2e615585-4732-3ca7-80eb-bf65b0df77b6 | |
| dc.identifier.uri | https://repositorio.uss.cl/handle/uss/20261 | |
| dc.description | Publisher Copyright: IEEE | |
| dc.description.abstract | In model predictive control, ensuring the accuracy and robustness of the prediction model is crucial. A Kalman filter (KF) is a self-correction method commonly used as an observer for state estimation in uncertain applications. Model-free predictive control utilizes an ultra-local model for prediction purposes. Precise measurements and feedback gains are required for accuracy. This study proposes a new ultra-local prediction model based on the KF, replacing the extended state observer (ESO) with the proposed model for disturbance observation. The KF-based prediction model is applied to the model-free predictive control of the induction motor (IM). The method is validated with experimental results, comparing it to the ESO-based prediction model, using a 4 kW IM setup. | en |
| dc.language.iso | eng | |
| dc.relation.ispartof | vol. 39 Issue: no. 12 Pages: 15811-15821 | |
| dc.source | IEEE Transactions on Power Electronics | |
| dc.title | Compensating the Measurement Error in Model-Free Predictive Control of Induction Motor via Kalman Filter-Based Ultra-Local Model | en |
| dc.type | Artículo | |
| dc.identifier.doi | 10.1109/TPEL.2024.3443134 | |
| dc.publisher.department | Facultad de Ingeniería |
| Ficheros | Tamaño | Formato | Ver |
|---|---|---|---|
|
No hay ficheros asociados a este ítem. |
|||