Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Ahsan, Muhammad
dc.contributor.author Hassan, Muhammad Waqar
dc.contributor.author Rodriguez, Jose
dc.contributor.author Abdelrahem, Mohamed
dc.date.accessioned 2026-02-08T03:26:35Z
dc.date.available 2026-02-08T03:26:35Z
dc.date.issued 2025
dc.identifier.issn 2169-3536
dc.identifier.uri https://repositorio.uss.cl/handle/uss/20351
dc.description Publisher Copyright: © 2013 IEEE.
dc.description.abstract The presented research paper proposes a novel integrated technique combining LeNet-5 with Continuous Wavelet Transform (CWT) along with Long Short-Term Memory (LSTM). The purpose of this integration is to improve the performance of mechanisms used for the detection of defects in rotatory machines across various operating conditions. The Convolutional Neural Networks (CNN) assists the presented CWT-LeNet-5-LSTM technique in finding the complex characteristics in the data, while LSTM learns the trends in the dataset and performs the necessary analysis of vibrations occurring in faulty machines. The developed model was examined for various loads and faults to extract results having accuracies of 99.6%, 96.9%, 92.5% and 96.6% for load conditions 3, 2, 1, and 0, respectively. These results demonstrate the ability of the proposed model to adapt according to varying load conditions while having the necessary levels of accuracy. This validates the model to perform precise fault detection and diagnosis, offering capabilities of predictive maintenance in industrial settings. en
dc.language.iso eng
dc.relation.ispartof vol. 13 Issue: Pages: 1026-1045
dc.source IEEE Access
dc.title Enhanced Fault Diagnosis in Rotating Machinery Using a Hybrid CWT-LeNet-5-LSTM Model : Performance Across Various Load Conditions en
dc.type Artículo
dc.identifier.doi 10.1109/ACCESS.2024.3522948
dc.publisher.department Facultad de Ingeniería


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem