Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Slater, Paula G.
dc.contributor.author Domínguez-Romero, Miguel E.
dc.contributor.author Campos, Guillermo
dc.contributor.author Aravena, Vania
dc.contributor.author Cavieres-Lepe, Javier
dc.contributor.author Eisner, Verónica
dc.date.accessioned 2026-02-08T03:27:04Z
dc.date.available 2026-02-08T03:27:04Z
dc.date.issued 2025
dc.identifier.issn 2296-634X
dc.identifier.other Mendeley: 855a84e4-ae57-38e2-83da-b9559943bf4d
dc.identifier.uri https://repositorio.uss.cl/handle/uss/20377
dc.description Publisher Copyright: Copyright © 2025 Slater, Domínguez-Romero, Campos, Aravena, Cavieres-Lepe and Eisner.
dc.description.abstract Spinal cord injury (SCI) results in severe disruption of communication between the brain and body, causing motor, sensory, and autonomic dysfunctions. While SCI in mammals leads to permanent impairment due to limited regenerative capacity, certain non-mammalian species, such as Xenopus laevis larval stages, exhibit remarkable regenerative abilities. During Xenopus laevis spinal cord regeneration, neural stem precursor cells (NSPCs) surrounding the central canal rapidly proliferate in response to SCI, compensating for cellular loss, restoring canal continuity, and generating new neurons to reestablish lost connections. It has been described that mitochondria and cellular metabolism play essential roles in stem cell proliferation, self-renewal, and differentiation. However, the mitochondrial and cellular metabolic response during spinal cord regeneration remains unexplored. This study uses electron and confocal microscopy to investigate the NSPCs mitochondrial response in Xenopus laevis following SCI. We observed that mitochondria exhibit a rapid and transient response after SCI, characterized by a disruption of the mitochondrial localization, a decrease in mitochondrial number per cell section, and an increase in mitochondrial area and circularity. Furthermore, mitochondria adopted a swollen phenotype, which did not impair mitochondrial function or cellular energy balance. This morphological shift was accompanied by a transient decrease in the mitochondrial membrane potential and a metabolic switch favoring glycolysis. Therefore, these findings demonstrate that a transient metabolic shift toward glycolysis occurs during spinal cord regeneration. en
dc.language.iso eng
dc.relation.ispartof vol. 13 Issue: no. 1529093 Pages: 1
dc.source Frontiers in Cell and Developmental Biology
dc.title Xenopus laevis neural stem progenitor cells exhibit a transient metabolic shift toward glycolysis during spinal cord regeneration en
dc.type Artículo
dc.identifier.doi 10.3389/fcell.2025.1529093
dc.publisher.department Facultad de Ciencias

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem