Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Rodríguez López, Lien
dc.contributor.author Bustos Usta, David Francisco
dc.contributor.author Torres Parra, Rafael Ricardo
dc.contributor.author Bourrel, Luc
dc.date.accessioned 2026-02-08T03:27:26Z
dc.date.available 2026-02-08T03:27:26Z
dc.date.issued 2025-02-02
dc.identifier.issn 2072-4292
dc.identifier.uri https://repositorio.uss.cl/handle/uss/20389
dc.description.abstract Sea surface temperature (SST) plays a pivotal role in air–sea interactions, with implications for climate, weather, and marine ecosystems, particularly in regions like the Caribbean Sea, where upwelling and dynamic oceanographic processes significantly influence biodiversity and fisheries. This study evaluates the performance of foundational models, Chronos and Lag-Llama, in forecasting SST using 22 years (2002–2023) of high-resolution satellite-derived and in situ data. The Chronos model, leveraging zero-shot learning and tokenization methods, consistently outperformed Lag-Llama across all forecast horizons, demonstrating lower errors and greater stability, especially in regions of moderate SST variability. The Chronos model’s ability to forecast extreme upwelling events is assessed, and a description of such events is presented for two regions in the southern Caribbean upwelling system. The Chronos forecast resembles SST variability in upwelling regions for forecast horizons of up to 7 days, providing reliable short-term predictions. Beyond this, the model exhibits increased bias and error, particularly in regions with strong SST gradients and high variability associated with coastal upwelling processes. The findings highlight the advantages of foundational models, including reduced computational demands and adaptability across diverse tasks, while also underscoring their limitations in regions with complex physical oceanographic phenomena. This study establishes a benchmark for SST forecasting using foundational models and emphasizes the need for hybrid approaches integrating physical principles to improve accuracy in dynamic and ecologically critical regions. es
dc.language.iso eng
dc.relation.ispartof vol. 17 Issue: no. 3 Pages: 517-542
dc.source Remote Sensing
dc.title Sea Surface Temperature Forecasting Using Foundational Models: A Novel Approach Assessed in the Caribbean Sea en
dc.title.alternative Predicción de la temperatura de la superficie del mar mediante modelos fundacionales: Un nuevo enfoque evaluado en el Mar Caribe es
dc.type Artículo
dc.identifier.doi 10.3390/rs17030517
dc.publisher.department Facultad de Ingeniería


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem