Temporalmente, el archivo digital asociado a esta publicación, no se encuentra disponible. Para más información escribir a [email protected]
Este documento se encuentra disponible en su fuente de origen, si desea acceder al texto completo, puedes hacerlo a continuación:
|
Autor(es)
Tapia, Lilianne; Aguayo, Monserrat; Anabalón, Andrés; Astefanesei, Dumitru; Grandi, Nicolás; Izaurieta, Fernando; Oliva, Julio; Quinzacara, Cristian |
|
ISSN:
0370-2693 |
|
Idioma:
eng |
|
Fecha:
2025-03 |
|
Tipo:
Artículo |
|
Revista:
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics |
|
Datos de la publicación:
vol. 862 Issue: no. 139347 Pages: |
|
DOI:
10.1016/j.physletb.2025.139347 |
|
Descripción:
Publisher Copyright: © 2025 The Author(s) |
|
Resumen:
In this paper, we analyze the scalar field (quasi-)normal modes of recently derived rotating black holes within the framework of Einstein-Gauss-Bonnet theory at the Chern-Simons point in five dimensions. We also examine the mode spectrum of these probes on new static gravitational solitons. These solitons, featuring a regular center, are constructed from static black holes with gravitational hair via a double analytic continuation. By imposing ingoing boundary conditions at the horizons of rotating black holes, ensuring regularity at the soliton centers, and imposing Dirichlet boundary conditions at infinity, we obtain numerical spectra for the rotating black holes and solitons. For static black holes, we demonstrate analytically that the imaginary part of the mode frequencies is negative. Our analysis of the massless Klein-Gordon equation on five-dimensional geometries reveals an infinite family of gapped, massive three-dimensional Klein-Gordon fields, despite the presence of a non-compact extended direction. For the static solitons, the frequencies are real and non-equispaced, whereas in the rotating black holes, counter-rotating modes are absorbed more quickly, and the imaginary part of the co-rotating modes approaches zero as extremality is approached. Additionally, we show that both the rotating black holes and solitons can be equipped with non-trivial torsion, leading to a novel branch of solutions. In this paper, we analyze the scalar field (quasi-)normal modes of recently derived rotating black holes within the framework of Einstein-Gauss-Bonnet theory at the Chern-Simons point in five dimensions. We also examine the mode spectrum of these probes on new static gravitational solitons. These solitons, featuring a regular center, are constructed from static black holes with gravitational hair via a double analytic continuation. By imposing ingoing boundary conditions at the horizons of rotating black holes, ensuring regularity at the soliton centers, and imposing Dirichlet boundary conditions at infinity, we obtain numerical spectra for the rotating black holes and solitons. For static black holes, we demonstrate analytically that the imaginary part of the mode frequencies is negative. Our analysis of the massless Klein-Gordon equation on five-dimensional geometries reveals an infinite family of gapped, massive three-dimensional Klein-Gordon fields, despite the presence of a non-compact extended direction. For the static solitons, the frequencies are real and non-equispaced, whereas in the rotating black holes, counter-rotating modes are absorbed more quickly, and the imaginary part of the co-rotating modes approaches zero as extremality is approached. Additionally, we show that both the rotating black holes and solitons can be equipped with non-trivial torsion, leading to a novel branch of solutions. |
| Ficheros | Tamaño | Formato | Ver |
|---|---|---|---|
|
No hay ficheros asociados a este ítem. |
|||
El Repositorio Institucional de la Universidad San Sebastián reúne los trabajos académicos y de investigación elaborados por la comunidad universitaria. Contribuye a la visibilidad y difusión, para ser consultados a través de acceso abierto por toda la comunidad nacional e internacional.
El objetivo del Repositorio es almacenar, conservar y entregar en formato electrónico, los resultados del quehacer institucional, permitiendo mayor visibilidad y difusión por medio del acceso abierto y gratuito.