Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Poblete, Simón
dc.contributor.author Mlynarczyk, Mikolaj
dc.contributor.author Szachniuk, Marta
dc.date.accessioned 2026-02-08T03:28:56Z
dc.date.available 2026-02-08T03:28:56Z
dc.date.issued 2025-03
dc.identifier.issn 1553-734X
dc.identifier.other Mendeley: 31ec8cce-b157-3f97-9143-b4df5580554b
dc.identifier.uri https://repositorio.uss.cl/handle/uss/20457
dc.description Publisher Copyright: © 2025 Poblete et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
dc.description.abstract RNA 3D structure prediction often encounters entanglements, computational artifacts that complicate structural models, resulting in their exclusion from further studies despite the potentially accurate prediction of regions outside the entanglement. This study presents a protocol aimed at resolving such issues in RNA models while preserving the overall 3D fold and structural integrity. By employing the SPQR coarse-grained model and short Molecular Dynamics simulations, the protocol imposes energy terms that enable selective modifications to disentangle structures without causing significant distortions. The method was validated on 195 entangled RNA models from CASP15 and RNA-Puzzles, successfully resolving over 70% of interlaces and approximately 40% of lassos, with minimal impact on the original geometry but notable improvement in ClashScore. The efficiency of untangling conformations that are unequivocally classified as artifacts is 81%. Certain cases, particularly those involving dense packing of atoms or complex secondary structures, posed challenges that limited the efficiency of the method. In this paper, we present quantitative results from the application of the protocol and discuss examples of both successfully disentangled and unresolved structures. We show a viable approach for refining models previously deemed unsuitable due to topological artifacts. en
dc.language.iso eng
dc.relation.ispartof vol. 21 Issue: no. 3 MARCH Pages:
dc.source PLoS Computational Biology
dc.title Unknotting RNA : A method to resolve computational artifacts en
dc.type Artículo
dc.identifier.doi 10.1371/journal.pcbi.1012843
dc.publisher.department Facultad de Ingeniería

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem