Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author de la Fuente, Raúl
dc.contributor.author Radrigan, Luciano
dc.contributor.author Morales, Anibal S.
dc.date.accessioned 2026-02-08T03:30:03Z
dc.date.available 2026-02-08T03:30:03Z
dc.date.issued 2025
dc.identifier.issn 2169-3536
dc.identifier.uri https://repositorio.uss.cl/handle/uss/20507
dc.description Publisher Copyright: © 2013 IEEE.
dc.description.abstract Mining mobile machinery in non-stationary operations faces high levels of wear and unpredictable stress, posing significant challenges for predictive maintenance (PdM). This paper introduces a hierarchical inference network for PdM consisting on edge sensor devices, gateways, and cloud services for real-time condition monitoring. The system dynamically can adjusts inference locations – on-device, on-gateway, or on-cloud – based on trade-offs between real-time demands and conditions such as accuracy, latency, and battery range. The edge-based architecture enables rapid decision-making directly on-sensor or on-gateway, achieving classification accuracies above 90% while reducing latency up to 30% and power consumption on sensor nodes by approximately 45% regarding the cloud inference mode. This is critical to ensure machinery uptime in remote, rugged environments. The use of Tiny-Machine-Learning (TinyML) optimization approaches allow optimal accuracy and model compression for efficient deployment of deep learning models on IoT edge devices with limited hardware resources. The ESN-PdM hierarchical framework offers a scalable and adaptive solution for reliable condition monitoring and anomaly detection, contributing to advancing technology in PdM frameworks for real-world industrial applications. en
dc.language.iso eng
dc.relation.ispartof vol. 13 Issue: Pages: 59480-59504
dc.source IEEE Access
dc.title Enhancing Predictive Maintenance in Mining Mobile Machinery Through a Hierarchical Inference Network en
dc.type Artículo
dc.identifier.doi 10.1109/ACCESS.2025.3557405
dc.publisher.department Facultad de Ingeniería


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem