Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Roa, Simón
dc.contributor.author Sirena, Martín
dc.contributor.author Domenichini, Pablo
dc.contributor.author Abarzúa Riquelme, Gonzalo Andrés
dc.date.accessioned 2026-02-08T03:30:26Z
dc.date.available 2026-02-08T03:30:26Z
dc.date.issued 2025-09
dc.identifier.issn 0009-2614
dc.identifier.other Mendeley: a29d36cd-8943-3fc9-be13-f60c2eca410e
dc.identifier.uri https://repositorio.uss.cl/handle/uss/20526
dc.description Publisher Copyright: © 2025 Elsevier B.V.
dc.description.abstract In freestanding form or attached to the substrate, Ni-Mn-Ga Shape Memory Alloys (SMAs) thin films and their near-stoichiometric configurations have attracted interest in recent years for applications in next-generation MEMS technologies. Thin films' capacity to recover stress-induced strain energy and total strain are critical to assess their potential for applications in these technologies. However, these capacities have not been extensively explored in this kind of alloys, especially at the nanoscale. In this work, we report a study of these aspects at the nanoscale in near-stoichiometric Ni 2MnGa thin films by Atomic Force Microscopy (AFM)-assisted nanoindentation technique. Films with thickness (t) of 100, 250 and 500 [nm] fabricated on MgO(001) monocrystalline substrates by DC magnetron sputtering were studied. Results show that films exhibit a high capacity to recover stress-induced strain energy (> 70 % of the total strain energy) for relatively high indentation depths (> 0.3t). Pseudoelasticity effects were observed under certain film size and indentation depths conditions, which was evidenced by the presence of practically no mechanical hysteresis (plastic strain) concerning maximum strains that are comparable to the films' thicknesses. This behavior was observed together with considerable strain energy dissipation, suggesting the emergence of the pseudoelastic response due to stress-induced martensitic transformation. Our results suggest that the pseudoelastic behavior is strongly dependent on the film thickness, which seems to involve a competition between substrate-induced hardening effects and bulk martensitic transformation. en
dc.language.iso eng
dc.relation.ispartof vol. 874-875 Issue: no. 142171 Pages:
dc.source Chemical Physics Letters
dc.title AFM nanoindentation-based study of thickness effects on the pseudoelastic behavior of Ni-Mn-Ga thin films en
dc.title.alternative Estudio basado en nanoindentación AFM de los efectos del espesor en el comportamiento pseudoelástico de películas delgadas de Ni-Mn-Ga es
dc.type Artículo
dc.identifier.doi 10.1016/j.cplett.2025.142171
dc.publisher.department Facultad de Ingeniería


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem