Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Silva-Andrade, Claudia
dc.contributor.author Hernández, Sergio
dc.contributor.author Saa, Pedro
dc.contributor.author Perez-Rueda, Ernesto
dc.contributor.author Garrido, Daniel
dc.contributor.author Martin, Alberto J.
dc.date.accessioned 2026-02-08T03:31:32Z
dc.date.available 2026-02-08T03:31:32Z
dc.date.issued 2025-05-28
dc.identifier.issn 2167-8359
dc.identifier.other Mendeley: d5138c5a-9c23-3caf-bdff-5eb9079afa25
dc.identifier.uri https://repositorio.uss.cl/handle/uss/20564
dc.description Publisher Copyright: © 2025 Silva-Andrade et al.
dc.description.abstract Understanding the behavior of microbial consortia is crucial for predicting metabolite production by microorganisms. Genome-scale network reconstructions enable the computation of metabolic interactions and specific associations within microbial consortia underpinning the production of different metabolites. In the context of the human gut, butyrate is a central metabolite produced by bacteria that plays a key role within the gut microbiome impacting human health. Despite its importance, there is a lack of computational methods capable of predicting its production as a function of the consortium composition. Here, we present a novel machine-learning approach leveraging automatically generated genome-scale metabolic models to tackle this limitation. Briefly, all consortia made of two up to 13 members from a pool of 19 bacteria with known genomes, including at least one butyrate producer from a pool of three known producer species, were built and their (maximum) in silico butyrate production simulated. Using network-derived descriptors from each bacteria, butyrate production by the above consortia was used as training data for various machine learning models. The performance of the algorithms was evaluated using k-fold cross-validation and new experimental data, displaying a Pearson correlation coefficient exceeding 0.75 for the predicted and observed butyrate production in two bacteria consortia. While consortia with more than two bacteria showed generally worse predictions, the best machine-learning models still outperformed predictions from genome-scale metabolic models alone. Overall, this approach provides a valuable tool and framework for probing promising butyrate-producing consortia on a large scale, guiding experimentation, and more importantly, predicting metabolic production by consortia. en
dc.language.iso eng
dc.relation.ispartof vol. 13 Issue: Pages:
dc.source PeerJ
dc.title A machine-learning approach for predicting butyrate production by microbial consortia using metabolic network information en
dc.type Artículo
dc.identifier.doi 10.7717/peerj.19296
dc.publisher.department Facultad de Ingeniería


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem