Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Ahsan, Muhammad
dc.contributor.author Rodriguez, Jose
dc.contributor.author Abdelrahem, Mohamed
dc.date.accessioned 2026-02-08T03:31:33Z
dc.date.available 2026-02-08T03:31:33Z
dc.date.issued 2025
dc.identifier.issn 2169-3536
dc.identifier.uri https://repositorio.uss.cl/handle/uss/20565
dc.description Publisher Copyright: © 2013 IEEE.
dc.description.abstract This paper presents a novel approach for bearing fault diagnosis in induction motor utilizing an improved hybrid Continuous Wavelet Transform-Deep Convolutional Neural Network-Long Short-Term Memory (CWT-DCNN-LSTM) model. The vibration data, recorded using an low-cost ADXL355 accelerometer, was preprocessed by converting the one-dimensional (1D) signals into two-dimensional (2D) images using Continuous Wavelet Transform (CWT). The dataset, comprising 13 classes with varying fault conditions, was segmented and shuffled before model training. Three datasets, corresponding to different load conditions (100W, 200W, and 300W), were used to evaluate the model’s performance. Experimental results demonstrated high training accuracy of 100% and validation accuracies of 96.43%, 97.47%, and 95.06% for the 100W, 200W, and 300W load conditions, respectively. Validation losses were recorded at 12.33%, 9.81%, and 20.33% for the respective loads. Furthermore, performance results using accuracy, sensitivity, specificity, balanced accuracy and geometric mean were computed for all three load conditions. The results indicate the robustness and effectiveness of the proposed CWT-DCNN-LSTM model for bearing fault diagnosis of induction motor using low-cost ADXL335 accelerometer, highlighting its potential for real-world industrial applications. en
dc.language.iso eng
dc.relation.ispartof vol. 13 Issue: Pages: 101037-101050
dc.source IEEE Access
dc.title Bearing Fault Diagnosis in Induction Motors Using Low-Cost Triaxial ADXL355 Accelerometer and a Hybrid CWT-DCNN-LSTM Model en
dc.type Artículo
dc.identifier.doi 10.1109/ACCESS.2025.3577672
dc.publisher.department Facultad de Ingeniería


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem