Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Turner, Edward A.
dc.contributor.author Crespo, Francisco
dc.contributor.author Sardanyés, Josep
dc.contributor.author Morales, Nolbert
dc.date.accessioned 2026-02-08T03:31:49Z
dc.date.available 2026-02-08T03:31:49Z
dc.date.issued 2025-08
dc.identifier.issn 0303-6812
dc.identifier.uri https://repositorio.uss.cl/handle/uss/20581
dc.description Publisher Copyright: © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
dc.description.abstract Quasispecies theory provides the conceptual and theoretical bases for describing the dynamics of biological information of replicators subject to large mutation rates. This theory, initially conceived within the framework of prebiotic evolution, is also being used to investigate the evolutionary dynamics of RNA viruses and heterogeneous cancer cells populations. In this sense, efforts to extend the initial quasispecies theory to more realistic scenarios have been made in recent decades. Despite this, how time lags in RNA synthesis and periodic fluctuations impact quasispecies dynamics remains poorly studied. In this article, we combine the theory of delayed ordinary differential equations and topological Leray-Schauder degree to investigate the classical quasispecies model in the single-peak fitness landscape considering time lags and periodic fluctuations in replication. First, we prove that the dynamics with time lags under the constant population constraint remains in the simplex in both forward and backward times. With backward mutation and periodic fluctuations, we prove the existence of periodic orbits regardless of time lags. Nevertheless, without backward mutation, neither periodic fluctuations nor the introduction of time lags leads to periodic orbits. However, in the case of periodic fluctuations, solutions converge exponentially to a periodic oscillation around the equilibria associated with a constant replication rate. We check the validity of the error catastrophe hypothesis assuming no backward mutation; we determine that the error threshold remains sound for the case of time of periodic fitness and time lags with constant fitness. Finally, our results show that the error threshold is not found with backward mutations. en
dc.description.abstract Quasispecies theory provides the conceptual and theoretical bases for describing the dynamics of biological information of replicators subject to large mutation rates. This theory, initially conceived within the framework of prebiotic evolution, is also being used to investigate the evolutionary dynamics of RNA viruses and heterogeneous cancer cells populations. In this sense, efforts to extend the initial quasispecies theory to more realistic scenarios have been made in recent decades. Despite this, how time lags in RNA synthesis and periodic fluctuations impact quasispecies dynamics remains poorly studied. In this article, we combine the theory of delayed ordinary differential equations and topological Leray-Schauder degree to investigate the classical quasispecies model in the single-peak fitness landscape considering time lags and periodic fluctuations in replication. First, we prove that the dynamics with time lags under the constant population constraint remains in the simplex in both forward and backward times. With backward mutation and periodic fluctuations, we prove the existence of periodic orbits regardless of time lags. Nevertheless, without backward mutation, neither periodic fluctuations nor the introduction of time lags leads to periodic orbits. However, in the case of periodic fluctuations, solutions converge exponentially to a periodic oscillation around the equilibria associated with a constant replication rate. We check the validity of the error catastrophe hypothesis assuming no backward mutation; we determine that the error threshold remains sound for the case of time of periodic fitness and time lags with constant fitness. Finally, our results show that the error threshold is not found with backward mutations. es
dc.language.iso eng
dc.relation.ispartof vol. 91 Issue: no. 2 Pages:
dc.source Journal of Mathematical Biology
dc.title Quasispecies dynamics with time lags and periodic fluctuations in replication en
dc.type Artículo
dc.identifier.doi 10.1007/s00285-025-02239-4
dc.publisher.department Facultad de Ingeniería


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem