Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Tamersit, Khalil
dc.contributor.author Kouzou, Abdellah
dc.contributor.author Rodriguez, José
dc.contributor.author Abdelrahem, Mohamed
dc.date.accessioned 2026-02-08T03:31:50Z
dc.date.available 2026-02-08T03:31:50Z
dc.date.issued 2025-06
dc.identifier.issn 2072-666X
dc.identifier.uri https://repositorio.uss.cl/handle/uss/20582
dc.description Publisher Copyright: © 2025 by the authors.
dc.description.abstract In this article, the role of downscaling in boosting the sensitivity of a novel label-free DNA sensor based on sub-10 nm dielectric-modulated transition metal dichalcogenide field-effect transistors (DM-TMD FET) is presented through a quantum simulation approach. The computational method is based on self-consistently solving the quantum transport equation coupled with electrostatics under ballistic transport conditions. The concept of dielectric modulation was employed as a label-free biosensing mechanism for detecting neutral DNA molecules. The computational investigation is exhaustive, encompassing the band profile, charge density, current spectrum, local density of states, drain current, threshold voltage behavior, sensitivity, and subthreshold swing. Four TMD materials were considered as the channel material, namely, MoS2, MoSe2, MoTe2, and WS2. The investigation of the scaling capability of the proposed label-free gate-all-around DM-TMDFET-based biosensor showed that gate downscaling is a valuable approach not only for producing small biosensors but also for obtaining high biosensing performance. Furthermore, we found that reducing the device size from 12 nm to 9 nm yields only a moderate improvement in sensitivity, whereas a more aggressive downscaling to 6 nm leads to a significant enhancement in sensitivity, primarily due to pronounced short-channel effects. The obtained results have significant technological implications, showing that miniaturization enhances the sensitivity of the proposed nanobiosensor. en
dc.language.iso eng
dc.relation.ispartof vol. 16 Issue: no. 6 Pages:
dc.source Micromachines
dc.title Quantum Simulation Study of Ultrascaled Label-Free DNA Sensors Based on Sub-10 nm Dielectric-Modulated TMD FETs : Sensitivity Enhancement Through Downscaling en
dc.type Artículo
dc.identifier.doi 10.3390/mi16060690
dc.publisher.department Facultad de Ingeniería


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem