Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Agouzoul, Naima
dc.contributor.author Oukennou, Aziz
dc.contributor.author Elmariami, Faissal
dc.contributor.author Ebeed, Mohamed
dc.contributor.author Boukherouaa, Jamal
dc.contributor.author Gadal, Rabiaa
dc.contributor.author Aly, Mokhtar
dc.contributor.author Mohamed, Emad A.
dc.date.accessioned 2026-02-08T03:32:59Z
dc.date.available 2026-02-08T03:32:59Z
dc.date.issued 2025-07
dc.identifier.issn 1932-6203
dc.identifier.other Mendeley: 59eb9573-9049-3d6e-add8-61cf079e32e0
dc.identifier.uri https://repositorio.uss.cl/handle/uss/20635
dc.description Publisher Copyright: © 2025 Agouzoul et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
dc.description.abstract Improvement performance of transmission systems is crucial task that can be boosted via optimal reactive power dispatch (ORPD). However, the continuous variations of load demand and the power produced by the renewable energy sources (RERs) increases the complicities of solving the stochastic optimal reactive power dispatch (SORPD) solution. In this regard, a modified Dandelion Optimizer (MDO) algorithm is introduced to optimize the SORPD solution with taking into consideration the stochastic fluctuations or the random variations of the load demand and the power produced by RERs. The suggested MDO depends upon developing the searching exploration and exploitation abilities by integration of three methodologies involving the Quasi-oppositional-based-learning (QOBL), the Weibull flight motion strategy (WFM) and the fitness distance balance (FDB). The SORPD is solved for IEEE 30-bus system to reduce summation of expected power losses (SEPL) and enhance the summation of expected voltage stability (SEVS) with and without integration RERs. The uncertainties of the load demand and the power produced by the RERs are represented using Monte Carlo simulations and scenario reduction approach in which 15 scenarios are generated to model the stochastic nature of the load demand and the power produced by RERs. The simulation results reveal to that application the proposed algorithm for SORPD can reduce the SEPL and improve SEVS considerably, especially with integration of the RERs. The Comparative results demonstrate that the MDO algorithm is the best for solution the SORPD against sand cat swarm optimization (SCSO), gorilla troop optimizer (GTO), harmony search (HS), and Beluga whale optimization (BWO). en
dc.language.iso eng
dc.relation.ispartof vol. 20 Issue: no. 7 July Pages:
dc.source Plos One
dc.title Optimization the stochastic optimal reactive power dispatch with renewable energy resources using a modified dandelion algorithm en
dc.type Artículo
dc.identifier.doi 10.1371/journal.pone.0328170
dc.publisher.department Facultad de Ingeniería


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem