Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Rodríguez López, Lien
dc.contributor.author Vera Vera, Francisca V.
dc.contributor.author Muñoz, Leonardo
dc.contributor.author Pérez, Francisco
dc.contributor.author Alvarez, Lisandra Bravo
dc.contributor.author Montejo-Sánchez, Samuel
dc.contributor.author Matus Icaza, Vicente
dc.contributor.author Saavedra, Gabriel
dc.date.accessioned 2026-02-08T03:34:19Z
dc.date.available 2026-02-08T03:34:19Z
dc.date.issued 2025-09-02
dc.identifier.issn 1424-8220
dc.identifier.uri https://repositorio.uss.cl/handle/uss/20698
dc.description Publisher Copyright: © 2025 by the authors.
dc.description.abstract The growing number of connected devices has strained traditional radio frequency wireless networks, driving interest in alternative technologies such as optical wireless communications (OWC). Among OWC solutions, optical camera communication (OCC) stands out as a cost-effective option because it leverages existing devices equipped with cameras, such as smartphones and security systems, without requiring specialized hardware. This paper proposes a novel deep learning-based detection and classification model designed to optimize the receiver’s performance in an OCC system utilizing color-shift keying (CSK) modulation. The receiver was experimentally validated using an 8×8 LED matrix transmitter and a CMOS camera receiver, achieving reliable communication over distances ranging from 30 cm to 3 m under varying ambient conditions. The system employed CSK modulation to encode data into eight distinct color-based symbols transmitted at fixed frequencies. Captured image sequences of these transmissions were processed through a YOLOv8-based detection and classification framework, which achieved 98.4 % accuracy in symbol recognition. This high precision minimizes transmission errors, validating the robustness of the approach in real-world environments. The results highlight OCC’s potential for low-cost applications, where high-speed data transfer and long-range are unnecessary, such as Internet of Things connectivity and vehicle-to-vehicle communication. Future work will explore adaptive modulation and coding schemes as well as the integration of more advanced deep learning architectures to improve data rates and system scalability. es
dc.language.iso eng
dc.relation.ispartof vol. 25 Issue: no. 17 Pages: 5435-5448
dc.source Sensors (Switzerland)
dc.title High-Accuracy Deep Learning-Based Detection and Classification Model in Color-Shift Keying Optical Camera Communication Systems en
dc.title.alternative Modelo de detección y clasificación basado en aprendizaje profundo de alta precisión en sistemas de comunicación con cámara óptica con modulación por cambio de color es
dc.type Artículo
dc.identifier.doi 10.3390/s25175435
dc.publisher.department Facultad de Ingeniería


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem