Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Rodríguez López, Lien
dc.contributor.author Bustos Usta, David
dc.contributor.author Duran-Llacer, Iongel
dc.contributor.author Alvarez, Lisandra Bravo
dc.contributor.author Bourrel, Luc
dc.contributor.author Frappart, Frederic
dc.contributor.author Urrutia, Roberto
dc.date.accessioned 2026-02-08T03:34:23Z
dc.date.available 2026-02-08T03:34:23Z
dc.date.issued 2025
dc.identifier.issn 2673-6187
dc.identifier.uri https://repositorio.uss.cl/handle/uss/20703
dc.description Publisher Copyright: Copyright © 2025 Rodríguez-López, Usta, Duran-Llacer, Alvarez, Bourrel, Frappart and Urrutia.
dc.description.abstract In this study, multispectral images were used to detect toxic blooms in Villarrica Lake in Chile, using a time series of water quality data from 1989 to 2024, based on the extraction of spectral information from Landsat 8 and 9 satellite imagery. To explore the predictive capacity of these variables, we constructed 255 multiple linear regression models using different combinations of spectral bands and indices as independent variables, with phycocyanin concentration as the dependent variable. The most effective model, selected through a stepwise regression procedure, incorporated seven statistically significant predictors (p < 0.05) and took the following form: FCA = N/G + NDVI + B + GNDVI + EVI + SABI + CCI. This model achieved a strong fit to the validation data, with an R2 of 0.85 and an RMSE of 0.10 μg/L, indicating high explanatory power and relatively low error in phycocyanin estimation. When applied to the complete weekly time series of satellite observations, the model successfully captured both seasonal dynamics and interannual variability in phycocyanin concentrations (R2 = 0.92; RMSE = 0.05 μg/L). These results demonstrate the robustness and practical utility for long-term monitoring of harmful algal blooms in Lake Villarrica. es
dc.language.iso eng
dc.relation.ispartof vol. 6 Issue: Pages: 1633522-1633538
dc.source Frontiers in Remote Sensing
dc.title Advanced phycocyanin detection in a south American lake using landsat imagery and remote sensing en
dc.title.alternative Detección avanzada de ficocianina en un lago sudamericano mediante imágenes Landsat y teledetección es
dc.type Artículo
dc.identifier.doi 10.3389/frsen.2025.1633522
dc.publisher.department Facultad de Ingeniería


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem