Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Rodríguez López, Lien
dc.contributor.author Duran-Llacer, Iongel
dc.contributor.author Gomez-Escalonilla Canales, Víctor
dc.contributor.author Aliaga-Alvarado, Marcelo
dc.contributor.author Arumí, José Luis
dc.contributor.author Zambrano, Francisco
dc.contributor.author Martínez-Retureta, Rebeca
dc.contributor.author Martínez-Santos, Pedro
dc.date.accessioned 2026-02-08T03:35:47Z
dc.date.available 2026-02-08T03:35:47Z
dc.date.issued 2025-10-03
dc.identifier.issn 2352-801X
dc.identifier.uri https://repositorio.uss.cl/handle/uss/20779
dc.description.abstract Groundwater depletion can significantly impact the ecological integrity of groundwater-dependent ecosystems (GDEs). Identifying and mapping these ecosystems is essential for their effective management and conservation. This study presents a new probabilistic approach that uses machine learning techniques to predict the presence of GDEs zones in the Ligua and Petorca basins, central Chile. A comprehensive set of 21 spatially distributed explanatory variables related to GDEs occurrence was compiled. These include geology, topography, climate, and satellite-based indices. Using a dataset of 3067 GDEs presence/absence points, 16 supervised classification al gorithms were trained and evaluated with randomly selected subsets containing 100 %, 75 %, 50 %, and 25 % of the original dataset. This analysis involved collinearity assessment, cross-validation, feature selection, and hyperparameter tuning. Tree-based ensemble models, including Random Forest (RFC), AdaBoost (ABC), Gradient Boosting (GBC), and ExtraTrees (ETC), consistently outperformed other classifiers. In all subsets, regardless of the number of samples included, the models obtained raw scores above 0.90 for metrics such as test score, F1 score and the area under the curve (AUC), with key predictor variables identified as distance to rivers, rainfall, and land use/land cover. The models show high predictive performance consistently exceeding 0.95 on the above metrics. The resulting GDEs map manages to identify areas with a high probability of GDEs presence, clearly differentiating these ecosystems from adjacent agricultural areas. This study provides a robust methodological framework for GDEs mapping and serves as a valuable tool to manage and protect groundwater and GDEs in arid and semi-arid environments. es
dc.language.iso eng
dc.relation.ispartof vol. 31 Issue: Pages: 101526-101543
dc.source Groundwater for Sustainable Development
dc.title Approach to mapping groundwater-dependent ecosystems through machine learning in central Chile en
dc.title.alternative Enfoque para cartografiar los ecosistemas dependientes de las aguas subterráneas mediante el aprendizaje automático en Chile central es
dc.type Artículo
dc.identifier.doi 10.1016/j.gsd.2025.101526
dc.publisher.department Facultad de Ingeniería


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem