Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Rodríguez López, Lien
dc.contributor.author Muñoz-Alegría, Jeimmy Adriana
dc.contributor.author Núñez, Jorge
dc.contributor.author Oyarzún, Ricardo
dc.contributor.author Chávez, Cristian Alfredo
dc.contributor.author Arumí, José Luis
dc.date.accessioned 2026-02-08T03:35:54Z
dc.date.available 2026-02-08T03:35:54Z
dc.date.issued 2025-10-17
dc.identifier.issn 2073-4441
dc.identifier.uri https://repositorio.uss.cl/handle/uss/20787
dc.description Publisher Copyright: © 2025 by the authors.
dc.description.abstract Predicting the quality of freshwater, both surface and groundwater, is essential for the sustainable management of water resources. This study collected 1822 articles from the Scopus database (2000–2024) and filtered them using Topic Modeling to create the study corpus. The B-SLR analysis identified exponential growth in scientific publications since 2020, indicating that this field has reached a stage of maturity. The results showed that the predominant techniques for predicting water quality, both for surface and groundwater, fall into three main categories: (i) ensemble models, with Bagging and Boosting representing 43.07% and 25.91%, respectively, particularly random forest (RF), light gradient boosting machine (LightGBM), and extreme gradient boosting (XGB), along with their optimized variants; (ii) deep neural networks such as long short-term memory (LSTM) and convolutional neural network (CNN), which excel at modeling complex temporal dynamics; and (iii) traditional algorithms like artificial neural network (ANN), support vector machines (SVMs), and decision tree (DT), which remain widely used. Current trends point towards the use of hybrid and explainable architectures, with increased application of interpretability techniques. Emerging approaches such as Generative Adversarial Network (GAN) and Group Method of Data Handling (GMDH) for data-scarce contexts, Transfer Learning for knowledge reuse, and Transformer architectures that outperform LSTM in time series prediction tasks were also identified. Furthermore, the most studied water bodies (e.g., rivers, aquifers) and the most commonly used water quality indicators (e.g., WQI, EWQI, dissolved oxygen, nitrates) were identified. The B-SLR and Topic Modeling methodology provided a more robust, reproducible, and comprehensive overview of AI/ML/DL models for freshwater quality prediction, facilitating the identification of thematic patterns and research opportunities. es
dc.language.iso eng
dc.relation.ispartof vol. 17 Issue: no. 20 Pages: 2994-3030
dc.source Water (Switzerland)
dc.title A Bibliometric-Systematic Literature Review (B-SLR) of Machine Learning-Based Water Quality Prediction: Trends, Gaps, and Future Directions : Trends, Gaps, and Future Directions en
dc.title.alternative Revisión bibliográfica sistemática y bibliométrica (B-SLR) sobre la predicción de la calidad del agua basada en el aprendizaje automático: tendencias, lagunas y orientaciones futuras. es
dc.type Artículo
dc.identifier.doi 10.3390/w17202994
dc.publisher.department Facultad de Ingeniería


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem