Mostrar el registro sencillo del ítem
| dc.contributor.author | Sangwan, Vinita | |
| dc.contributor.author | Bhardwaj, Rashmi | |
| dc.contributor.author | Alfaro, Marco | |
| dc.contributor.author | Soto-Bubert, Andrés | |
| dc.contributor.author | Acevedo, Roberto | |
| dc.date.accessioned | 2026-02-08T03:35:55Z | |
| dc.date.available | 2026-02-08T03:35:55Z | |
| dc.date.issued | 2025 | |
| dc.identifier.issn | 2667-3126 | |
| dc.identifier.other | RIS: urn:85D1865CB366EB5ACC7CE93743C5EAA1 | |
| dc.identifier.uri | https://repositorio.uss.cl/handle/uss/20788 | |
| dc.description | Publisher Copyright: © 2025 | |
| dc.description.abstract | A semi-empirical framework is developed to estimate the viscosity of binary brine systems (m-Pas) over temperatures from 293 to 323 K and molal concentrations between 0 and 4, using a continuous viscosity function η[m,T] constructed from experimental salt-water data. The modeling employs Machine Learning (ML) algorithms – Artificial Neural Network (ANN), Random Forest Regressor (RFR), and Gaussian Process Regressor (GPR) to optimize prediction accuracy with fewer fitting parameters. Comparative assessment shows that the AI-based approach achieves an average absolute deviation (%AAD) below 1%, outperforming conventional models while utilizing fewer parameters. Specifically, the GPR model yielded the best results with a %AAD of 0.96%, root mean square error (RMSE) of 0.0001, and an R2 score of 0.9979, surpassing RFR (%AAD 6.65%) and ANN (%AAD 18.67%). Robustness and model validity are confirmed through rigorous cross-validation and confidence intervals. These findings demonstrate that machine learning, particularly GPR, provides a highly accurate and practical approach for predicting physicochemical properties in aqueous electrolyte environments, enabling effective industrial applications in process optimization and resource management. The results underscore machine learning as a practical approach for modelling physicochemical properties within aqueous electrolyte environments. | en |
| dc.language.iso | eng | |
| dc.relation.ispartof | vol. 20 Issue: Pages: | |
| dc.source | Chemical Thermodynamics and Thermal Analysis | |
| dc.title | Non-linear AI based viscosity prediction for binary brine data | en |
| dc.type | Artículo | |
| dc.identifier.doi | 10.1016/j.ctta.2025.100231 | |
| dc.publisher.department | Facultad de Ingeniería |
| Ficheros | Tamaño | Formato | Ver |
|---|---|---|---|
|
No hay ficheros asociados a este ítem. |
|||