Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Sangwan, Vinita
dc.contributor.author Bhardwaj, Rashmi
dc.contributor.author Alfaro, Marco
dc.contributor.author Soto-Bubert, Andrés
dc.contributor.author Acevedo, Roberto
dc.date.accessioned 2026-02-08T03:35:55Z
dc.date.available 2026-02-08T03:35:55Z
dc.date.issued 2025
dc.identifier.issn 2667-3126
dc.identifier.other RIS: urn:85D1865CB366EB5ACC7CE93743C5EAA1
dc.identifier.uri https://repositorio.uss.cl/handle/uss/20788
dc.description Publisher Copyright: © 2025
dc.description.abstract A semi-empirical framework is developed to estimate the viscosity of binary brine systems (m-Pas) over temperatures from 293 to 323 K and molal concentrations between 0 and 4, using a continuous viscosity function η[m,T] constructed from experimental salt-water data. The modeling employs Machine Learning (ML) algorithms – Artificial Neural Network (ANN), Random Forest Regressor (RFR), and Gaussian Process Regressor (GPR) to optimize prediction accuracy with fewer fitting parameters. Comparative assessment shows that the AI-based approach achieves an average absolute deviation (%AAD) below 1%, outperforming conventional models while utilizing fewer parameters. Specifically, the GPR model yielded the best results with a %AAD of 0.96%, root mean square error (RMSE) of 0.0001, and an R2 score of 0.9979, surpassing RFR (%AAD 6.65%) and ANN (%AAD 18.67%). Robustness and model validity are confirmed through rigorous cross-validation and confidence intervals. These findings demonstrate that machine learning, particularly GPR, provides a highly accurate and practical approach for predicting physicochemical properties in aqueous electrolyte environments, enabling effective industrial applications in process optimization and resource management. The results underscore machine learning as a practical approach for modelling physicochemical properties within aqueous electrolyte environments. en
dc.language.iso eng
dc.relation.ispartof vol. 20 Issue: Pages:
dc.source Chemical Thermodynamics and Thermal Analysis
dc.title Non-linear AI based viscosity prediction for binary brine data en
dc.type Artículo
dc.identifier.doi 10.1016/j.ctta.2025.100231
dc.publisher.department Facultad de Ingeniería


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem