Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Dehghani, Moslem
dc.contributor.author Aly, Mokhtar
dc.contributor.author Rodriguez, Jose
dc.contributor.author Sheybani, Ehsan
dc.contributor.author Javidi, Giti
dc.date.accessioned 2026-02-08T03:35:56Z
dc.date.available 2026-02-08T03:35:56Z
dc.date.issued 2025-06
dc.identifier.issn 2313-7673
dc.identifier.other Bibtex: biomimetics10060379
dc.identifier.other Mendeley: 6dbffd70-5b54-344b-8365-6ce60d60f8f0
dc.identifier.uri https://repositorio.uss.cl/handle/uss/20790
dc.description Publisher Copyright: © 2025 by the authors.
dc.description.abstract This paper introduces a novel nature-inspired optimization algorithm called the Grizzly Bear Fat Increase Optimizer (GBFIO). The GBFIO algorithm mimics the natural behavior of grizzly bears as they accumulate body fat in preparation for winter, drawing on their strategies of hunting, fishing, and eating grass, honey, etc. Hence, three mathematical steps are modeled and considered in the GBFIO algorithm to solve the optimization problem: (1) finding food sources (e.g., vegetables, fruits, honey, oysters), based on past experiences and olfactory cues; (2) hunting animals and protecting offspring from predators; and (3) fishing. Thirty-one standard benchmark functions and thirty CEC2017 test benchmark functions are applied to evaluate the performance of the GBFIO, such as unimodal, multimodal of high dimensional, fixed dimensional multimodal, and also the rotated and shifted benchmark functions. In addition, four constrained engineering design problems such as tension/compression spring design, welded beam design, pressure vessel design, and speed reducer design problems have been considered to show the efficiency of the proposed GBFIO algorithm in solving constrained problems. The GBFIO can successfully solve diverse kinds of optimization problems, as shown in the results of optimization of objective functions, especially in high dimension objective functions in comparison to other algorithms. Additionally, the performance of the GBFIO algorithm has been compared with the ability and efficiency of other popular optimization algorithms in finding the solutions. In comparison to other optimization algorithms, the GBFIO algorithm offers yields superior or competitive quasi-optimal solutions relative to other well-known optimization algorithms. en
dc.language.iso eng
dc.relation.ispartof vol. 10 Issue: no. 6 Pages:
dc.source Biomimetics
dc.title A Novel Nature-Inspired Optimization Algorithm : Grizzly Bear Fat Increase Optimizer en
dc.type Artículo
dc.identifier.doi 10.3390/biomimetics10060379
dc.publisher.department Facultad de Ingeniería


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem