Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Abu-Zaher, Mustafa
dc.contributor.author Shen, Ke
dc.contributor.author Aly, Mokhtar
dc.contributor.author Houran, Mohamad Abou
dc.contributor.author Sayed, Khairy
dc.contributor.author Abo-Khalil, Ahmed G.
dc.contributor.author Hassan, Alaaeldien
dc.date.accessioned 2026-02-08T03:36:50Z
dc.date.available 2026-02-08T03:36:50Z
dc.date.issued 2025-11
dc.identifier.issn 0142-0615
dc.identifier.other Mendeley: afe49b3f-14dc-3e09-93e5-b68a9ac92f76
dc.identifier.uri https://repositorio.uss.cl/handle/uss/20831
dc.description Publisher Copyright: © 2025
dc.description.abstract The control of power electronics converters represents a critical issue for integrating renewable sources into electrical grids. Classical controllers face challenges in addressing system nonlinearities, often requiring several complex mathematical procedures, complex tuning, and limited robustness under varying operating conditions. Artificial neural networks (ANNs) have recently demonstrated an intelligent approach to replacing existing control methods. This paper aims to develop an ANN design method for the current control loop to ensure the efficient operation of grid-tied photovoltaic (PV) systems with high performance in terms of active/reactive power commands. The proposed ANN method employs the Levenberg–Marquardt (LM) backpropagation algorithm, renowned for its rapid convergence and robustness, along with a hyperbolic tangent sigmoid activation function, which enables it to model complex nonlinear behaviors effectively. The proposed neural network controller is trained to operate with constant switching frequency over a wide range of operating conditions. The experiment setup was developed using the dSPACE MicroLabBox platform. The experimental validation demonstrates that the designed controller significantly enhances the performance and ensures reliable operation across a broad range of real power outputs. Furthermore, the simplicity and low-cost effectiveness of the proposed inverter design make it particularly attractive for energy generation in grid-tied photovoltaic systems, offering a viable solution for sustainable energy production. en
dc.language.iso eng
dc.relation.ispartof vol. 172 Issue: Pages:
dc.source International Journal of Electrical Power and Energy Systems
dc.title Power quality enhancement in grid-tied photovoltaic systems through artificial neural network-based current control strategies en
dc.type Artículo
dc.identifier.doi 10.1016/j.ijepes.2025.111362
dc.publisher.department Facultad de Ingeniería


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem